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Can we find correct categories w/o labels?

• Finding categories in
unlabeled data is ill-posed.
• Multiple ways to group the 

same data

• What principles can we use 
to determine the correct 
groupings?
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Instances that shift together group together

Domain 1
Species A

Species B

Domain 2
Species A

Species B

• Group together elements that shift together in 
prevalence across domains 



Latent Label Shift (LLS)

• Label Shift Assumption: Class conditional distributions over samples 
remain domain invariant, while class prevalences may shift.
• For all 𝑑, 𝑑′ ∈ 𝑟 , 𝑝𝑑(𝑥|𝑦) = 𝑝𝑑′(𝑥|𝑦)

• Goal: Estimate 𝑝𝑑(𝑦) and 𝑝𝑑(𝑦|𝑥).

Domain 1

Species A Species B

Domain 2

Species A Species B

Domain r

Species A Species B

…



Finite Inputs: an NMF model

• Consider mixing distribution Q in which domain is a random variable D.
• Then 𝑞 𝑥, 𝑦 𝐷 = 𝑑 = 𝑝𝑑 𝑥, 𝑦 .

• If X takes on finite set of values [𝑚], we model the mixture as the matrix 
product 𝑸𝑋|𝐷 = 𝑸𝑋|𝑌𝑸𝑌|𝐷, where
• 𝑸𝑋|𝐷 holds the known marginals over X in each domain

• 𝑸𝑋|𝑌 holds the unknown class-conditional distributions

• 𝑸𝑌|𝐷 holds the unknown marginals over Y in each domain.

• Solving for unknown matrices via Non-negative Matrix Factorization 
(NMF) is not identified in general.
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Isomorphism to Topic Modeling

• Topic modeling considers documents as mixtures of topics.
• Each topic has a word distribution (invariant over documents).

• LLS with finite set of values for X is isomorphic to topic modeling:
• A domain is a document.

• A label is a topic.

• An example is a word.

• Topic modeling gives us the anchor word condition for identifiability:
• If each label Y has some input X which occurs with nonzero probability only 

under that label, the solution is identifiable. [Donoho & Stodden, 2003]
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Extension to Continuous Inputs

• No prior identifiability results for continuous X.

• Our goal: find a suitable discretization of the continuous space.
• Resulting discrete problem will always satisfy label shift assumption.

• If the discretized problem satisfies the anchor word assumption, we can apply 
discrete identifiability conditions to identify the solution.



Identifiability Result for Continuous Inputs

• In Theorem 2, we give a set of sufficient conditions to identify 𝑝𝑑(𝑦)
and 𝑝𝑑(𝑦|𝑥):
• Anchor subdomain condition: for each label, there is a region of X space with 

nonzero support in only this label.

• Access to a domain discriminator: we assume we may query a function which
predicts the distribution 𝑞 𝑑 𝑥 over domains for any value X.

• Some other assumptions including rank assumptions on 𝑄𝑌|𝐷.

• Discretization strategy:
• Push density over X through the domain discriminator.

• Match point masses in 𝑞(𝑑|𝑥) space to distinct discrete values.
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Discriminate Discretize Factorize Adjust (DDFA)

• We outline a practical algorithm to find 𝑝𝑑 𝑦 and 𝑝𝑑(𝑦|𝑥).



Discriminate Discretize Factorize Adjust (DDFA)

1. Sample (input x, source domain d) data pairs



Discriminate Discretize Factorize Adjust (DDFA)

2. Train an estimate of a domain discriminator



Discriminate Discretize Factorize Adjust (DDFA)

3. Push samples through learned estimate



Discriminate Discretize Factorize Adjust (DDFA)

4. Cluster ො𝑞(𝑑|𝑥) vectors into a finite number of clusters



Discriminate Discretize Factorize Adjust (DDFA)

5. Discretize using clusters, build 𝑸𝑐 𝑋 |𝐷 matrix



Discriminate Discretize Factorize Adjust (DDFA)

6. Using NMF algorithm, decompose matrix



Discriminate Discretize Factorize Adjust (DDFA)

7. Estimate domain-specific classifier



Discriminate Discretize Factorize Adjust (DDFA)

Output: estimate of label-proportion matrix and domain-specific classifier.



Experiments

• Semi-synthetic experiments on CIFAR-10, CIFAR-20, ImageNet-50, 
FieldGuide-2, FieldGuide-28
• Sample 𝑸𝑌|𝐷, assign examples to different domains according to label 

prevalence, train a domain discriminator and evaluate recovery of labels.

• Can achieve higher classification accuracy and lower error in recovering 𝑸𝑌|𝐷

than baseline unsupervised approach SCAN, when 𝑸𝑌|𝐷 sufficiently sparse and 
in datasets with few classes.



Takeaways

• Use domain structure to uncover categories in unlabeled data

• Leverage a strong connection to topic modeling to establish sufficient 
set of conditions for identifiability.

• Establish experimentally that domain structure aids class discovery.


