Meta-Auto-Decoder for Solving Parametric Partial Differential Equations

Xiang Huang¹ Zhanhong Ye² Hongsheng Liu³ Beiji Shi³ Zidong Wang³ Kang Yang³ Yang Li³ Min Wang³ Haotian Chu³ Fan Yu³ Bei Hua¹ Lei Chen⁴ Bin Dong²

Definition of Parametric PDEs

General form of parametric PDEs

$$\mathcal{L}_{\tilde{x}}^{\gamma_1} u = 0, \quad \tilde{x} \in \Omega \subset \mathbb{R}^d, \\ \mathcal{B}_{\tilde{x}}^{\gamma_2} u = 0, \quad \tilde{x} \in \partial \Omega.$$

Given $u \in \mathcal{U}$ and $\eta \in \mathcal{A}$, solving parametric PDEs requires to learn an infinite-dimensional operator

$G\colon \mathcal{A} \to \mathcal{U}$

that map any PDE parameter η to its corresponding solution u^{η} (i.e., the solution mapping).

Symbol	Definition			
Ω	Solution regions			
$\partial \Omega$	The boundaries of Ω			
\mathcal{L}^{γ_1}	Partial differential operators corresponding to governing equations parametrized by γ_1			
\mathcal{B}^{γ_2}	Partial differential operators corresponding to boundary conditions parametrized by γ_2			
\widetilde{x}	Independent variable			
u	Solution of the PDEs			
$\mathcal{U} = \mathcal{U}(\Omega; \mathbb{R}^d)$	The function space of the solution of PDEs (i.e., $u \in \mathcal{U}$)			
$\eta = (\gamma_1, \gamma_2, \Omega)$	The variable parameter of the PDEs			
${\mathcal A}$	The space of PDE parameters (i.e., $\eta \in \mathcal{A}$)			
u^η	Solution u specific to the PDE parameter η			

Classification of Learning-Based PDE Solvers

- **NN as a new ansatz of solution** Approximating the solution of the PDEs with a neural network. PDEs or their variant forms are used as loss terms for training the neural network.
 - Physics-Informed Neural Networks (PINNs) <u>M. Raissi et al., JCP, 378:686-707, 2019.</u>
 - Deep Galerkin Method (DGM) Sirignano and Spiliopoulos, JCP, 375:1339-1364, 2018.
 - Deep Ritz Method (DRM) W. E and B. Yu, CMS, 6(1), 1-12, 2018.
 - Weak Adversarial Network (WAN) Y. Zang et al., JCP, 411:109409, 2020.
- **NN as a new ansatz of solution mapping** Using neural networks to learn the solution mapping between two infinite-dimensional function spaces.
 - > PDE-Net <u>Z. Long et al., ICML 2018.</u>
 - > Deep Operator network (DeepONet) L. Lu, P. Jin, G. E. Karniadakis, arXiv:1910.03193.
 - Fourier Neural Operator (FNO) <u>Z. Li et al., arXiv:2010.08895.</u>

Classification of Learning-Based PDE Solvers

Category	Method	Label-Free	Mesh-Free	Without Retraining
NN as a new ansatz of solution	PINNs	\checkmark	\checkmark	×
	DGM	\checkmark	\checkmark	×
	DRM	\checkmark	\checkmark	×
	WAN	\checkmark	\checkmark	×
NN as a new ansatz of solution mapping	PDE-Net	×	×	\checkmark
	DeepONet	×	\checkmark	\checkmark
	FNO	×	×	\checkmark

- Label-Free: Working in an unsupervised manner without generating labeled data from traditional computational methods or collecting data from the real world.
- Mesh-Free: Predefined mesh is not required. Training and inference can be performed on random coordinate points.
- Without Retraining: For a new PDE parameter η , inference can be performed directly without retraining.

Dilemma of Methods like PINNs

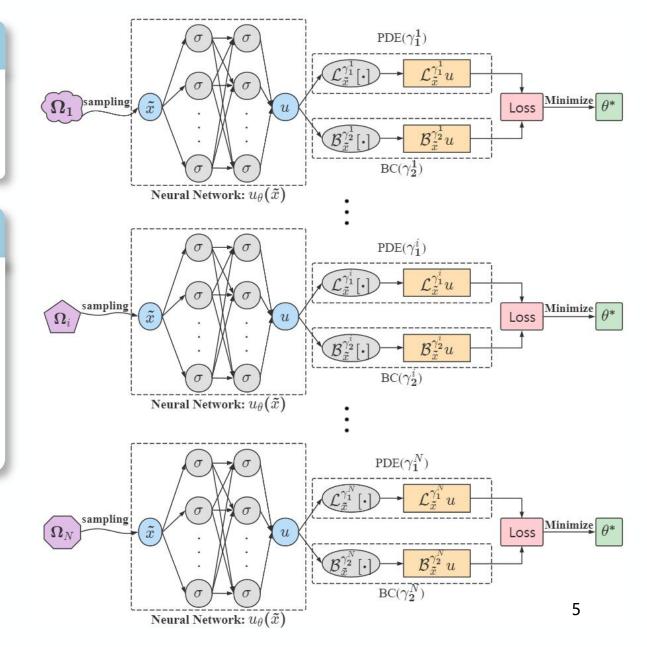
General form of parametric PDEs

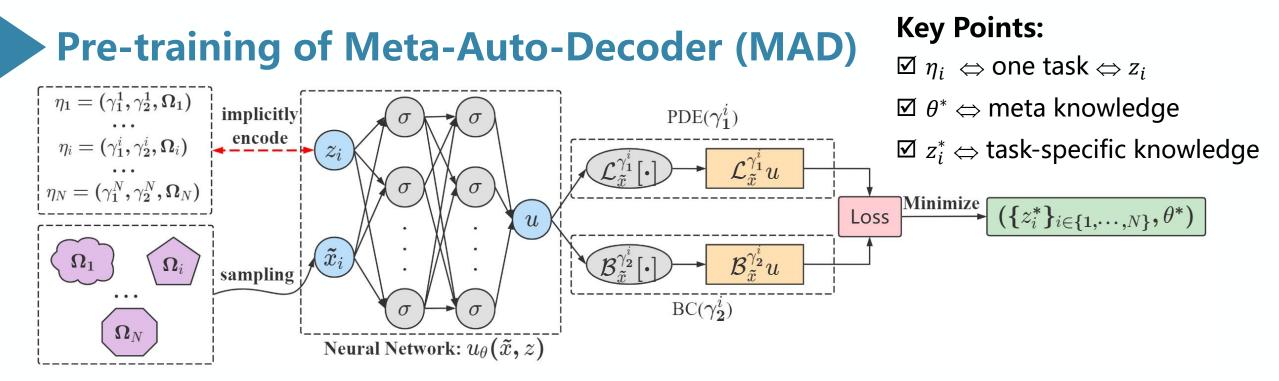
$$\mathcal{L}_{\tilde{x}}^{\gamma_1} u = 0, \quad \tilde{x} \in \Omega \subset \mathbb{R}^d, \\ \mathcal{B}_{\tilde{x}}^{\gamma_2} u = 0, \quad \tilde{x} \in \partial\Omega.$$

Physics-informed loss

$$L^{\eta_{i}}[u] = \left\| \mathcal{L}_{\tilde{x}}^{\gamma_{1}^{i}} u \right\|_{L^{2}(\Omega_{i})}^{2} + \lambda_{bc} \left\| \mathcal{B}_{\tilde{x}}^{\gamma_{2}^{i}} u \right\|_{L^{2}(\partial\Omega_{i})}^{2}$$
$$\hat{L}^{\eta_{i}}[u] = \frac{1}{M_{r}} \sum_{j=1}^{M_{r}} \left\| \mathcal{L}_{\tilde{x}}^{\gamma_{1}^{i}} u(\tilde{x}_{j}^{r}) \right\|_{2}^{2} + \frac{\lambda_{bc}}{M_{bc}} \sum_{j=1}^{M_{bc}} \left\| \mathcal{B}_{\tilde{x}}^{\gamma_{2}^{i}} u(\tilde{x}_{j}^{bc}) \right\|_{2}^{2}$$

The model weight θ^* need to be trained from scratch separately using loss $\hat{L}^{\eta_i}[u]$ for each PDE parameter $\eta_i = (\gamma_1^i, \gamma_2^i, \Omega_i)$.



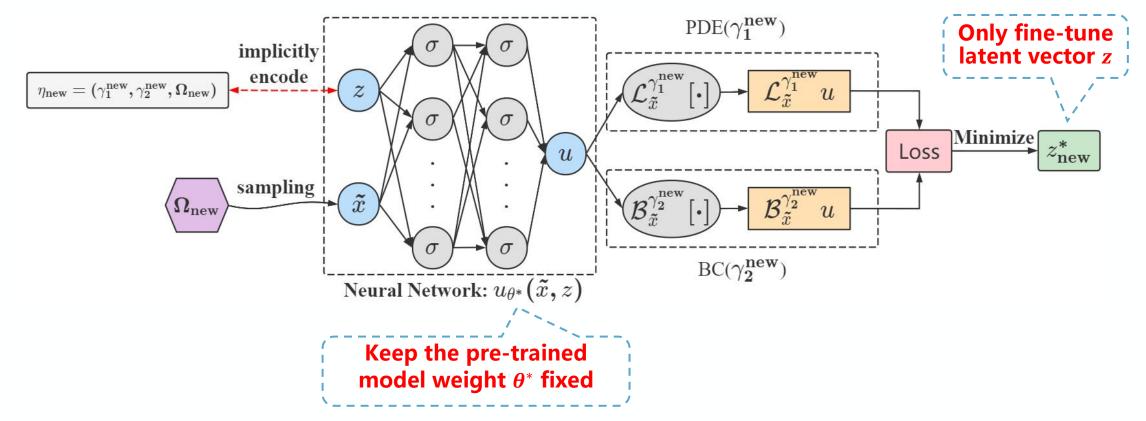


• **Pre-training Stage** Given *N* randomly generated PDE parameters $\eta_1, \dots, \eta_N \in A$, through solving the following optimization problem, a pre-trained model parametrized by θ^* is learned for all tasks and each task is paired with its own decoded latent vector z_i^* .

$$(\{z_i^*\}_{i \in \{1, \dots, N\}}, \theta^*) = \underset{\theta, \{z_i\}_{i \in \{1, \dots, N\}}}{\operatorname{arg min}} \sum_{i=1}^{N} (\hat{L}^{\eta_i}[u_{\theta}(\cdot, z_i)] + \frac{1}{\sigma^2} ||z_i||^2)$$

$$(\underset{\text{Corresponding to each}}{\operatorname{PDE parameter } \eta_i})$$
For training stability

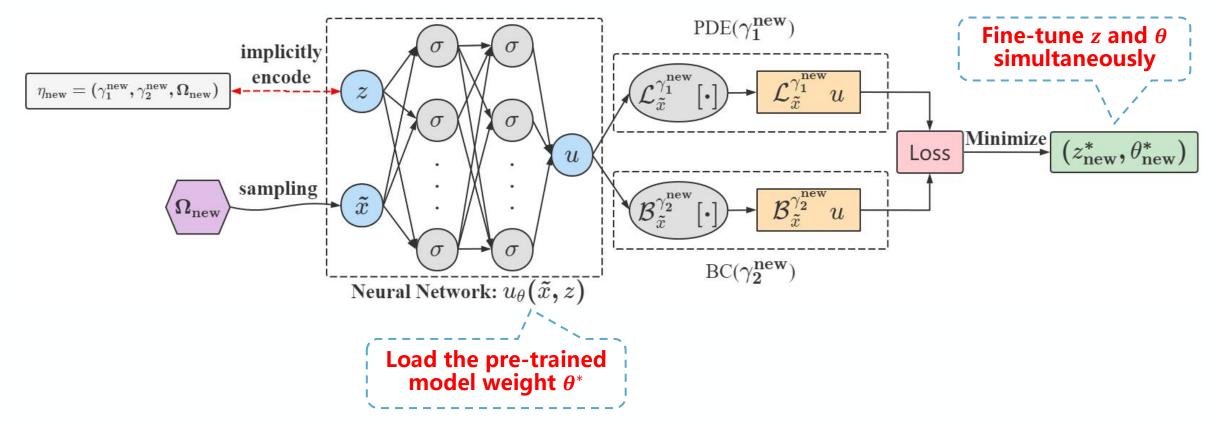
First Fine-tuning Strategy: MAD-L



• Fine-tuning Stage (MAD-L) Given a new PDE parameter η_{new} , MAD-L keeps the pre-trained weight θ^* fixed, and minimizes the following loss function to get obtain the optimal latent vector z_{new}^* . Then, $u_{\theta^*}(\cdot, z_{new}^*)$ is the approximate solution of PDEs with parameter η_{new} .

$$z_{new}^* = \arg\min_{z} \hat{L}^{\eta_{new}} [u_{\theta^*}(\cdot, z)] + \frac{1}{\sigma^2} ||z||^2$$
7

Second Fine-tuning Strategy: MAD-LM

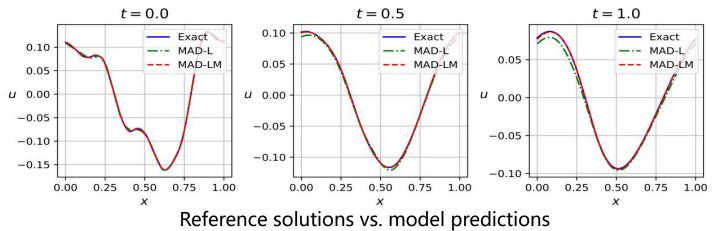


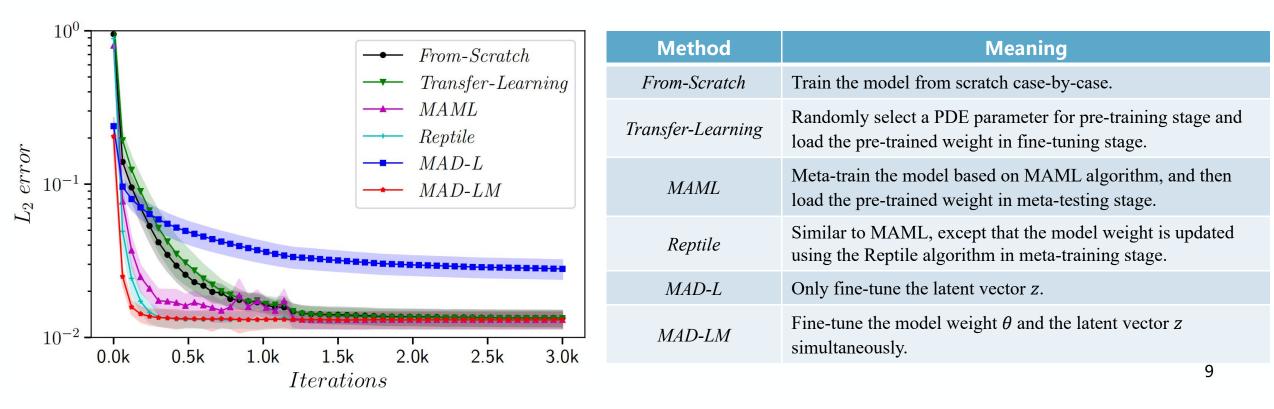
• Fine-tuning Stage (MAD-LM) Given a new PDE parameter η_{new} , MAD-LM fine-tunes the model weight θ with the latent vector z simultaneously, and solves the following optimization problem with initial model weight θ^* .

$$(z_{new}^*, \theta_{new}^*) = \arg\min_{z,\theta} \hat{L}^{\eta_{new}}[u_{\theta}(\cdot, z)] + \frac{1}{\sigma^2} ||z||^2$$

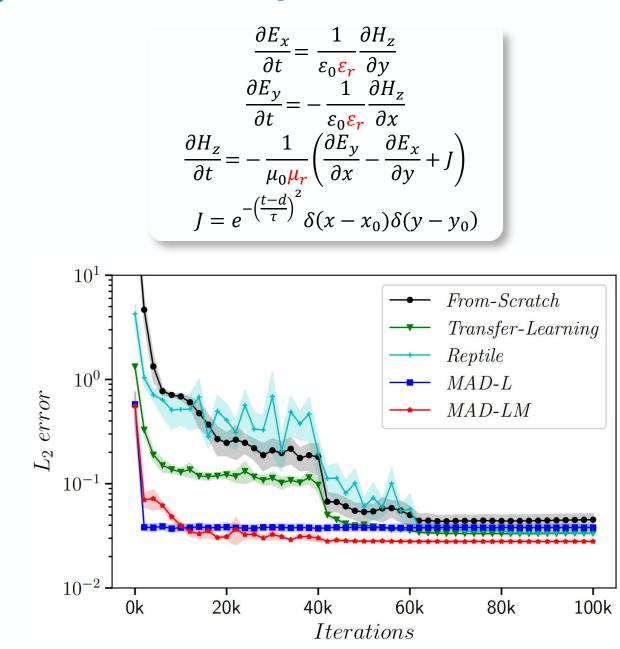
Burgers' Equation with Variable Initial Conditions

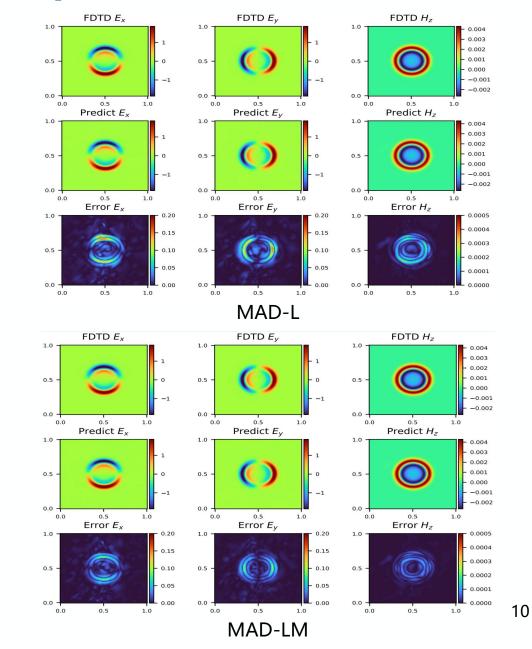
$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}, \quad x \in (0,1), t \in (0,1],$$
$$u(x,0) = \frac{u_0(x)}{u(x,0)}, \quad x \in (0,1).$$





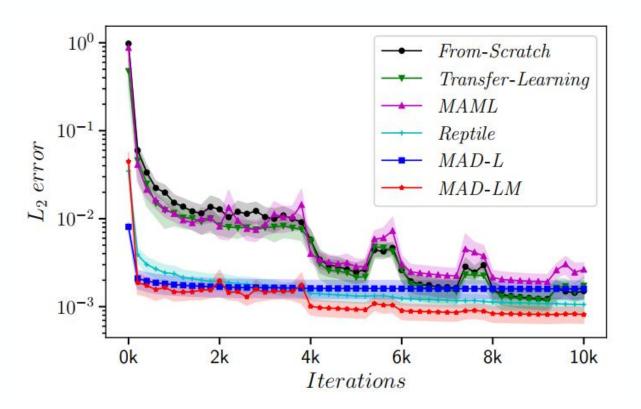
Maxwell's Equations with Variable Equation Coefficients

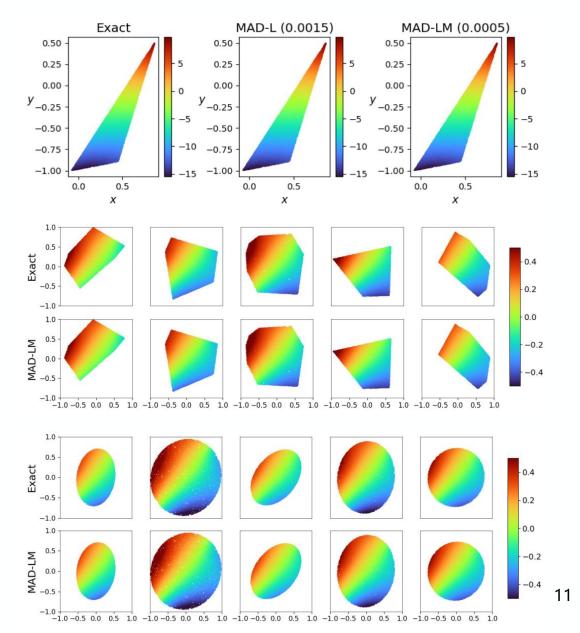




Laplace's Equation with Variable Solution Domains and Boundary Conditions

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad (x, y) \in \Omega,$$
$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega$$





Thanks! Q&A

- **☑** Source Code:
 - https://gitee.com/mindspore/mindscience/tree/master/MindElec/
- **☑** Our code is implemented by <u>MindSpore</u>.
- ☑ For more questions, please send email to <u>sahx@mail.ustc.edu.cn</u>.

