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« Can we develop a model-free provably RL for constrained MDP with function
approximation?

 Yes!! We can for linear CMDP.

 Reward, utilities, and transition probabilities are linear in feature space.

« Our regret and violation upper bound @(\/ d3H4K) with high probability (informal).
 Improves the regret bound of the tabular case as linear MDP contains tabular.

* |t is possible to achieve zero violation for large enough K with high probability while
maintaining @(\ﬁ{) regret.

 |dea: Consider an e-tighter problem (consider b + € instead of b in constraint).

* However, scales the regret by an additional H factor.
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Algorithm (High-level idea)

* Primal-Dual Adaptation of LSVI-UCB

. Natural idea: Take Lagrangian: V", + YVé’fl, and solve it like an unconstrained version;.

. Estimate optimistic versions Vk Vgl,

Q,’fl(x a)+ Y Qk 1()c, a); update the dual based on these estimated function.

set policy as greedily with respect to the composite

* However, it does not work!!

* Need to show uniform concentration bound for individual value-function— can not get ¢
-covering number for individual value function class which scales O(K) for greedy-policy.

 Our solution: Use soft-max policy instead of greedy policy.

* Optimism result does not hold, but can bound the gap by controlling the temp. co-efficient.
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* Multi-agent Domain

 Non-linear Function Approximation.

* Will it be possible to reduce the dependence on H or d? (The Lower bound
for unconstrained case is Q(d\/ H°K))

 Check our paper, arXiv:2206.11889
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