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How to sequentially learn policies which will be close to optimal while also 
satisfying the constraint?



State-of-the Art Results
• Metric: ,Regret(K) =
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(b − Vπk
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• Goal: Select policies over K episodes to minimize the regret and violation
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maintaining  regret.�̃�( K)

• Idea: Consider an -tighter problem (consider  instead of  in constraint).ϵ b + ϵ b

• However, scales the regret by an additional H factor.
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• Our solution: Use soft-max policy instead of greedy policy. 

• Optimism result does not hold, but can bound the gap by controlling the temp. co-efficient.
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Future Research Direction
• Multi-agent Domain

• Non-linear Function Approximation.

• Will it be possible to reduce the dependence on H or d?  (The Lower bound 
for unconstrained case is )Ω(d H3K)

• Check our paper, arXiv:2206.11889
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