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ABSTRACT

We present an exact analysis of learning performance of
kernel ridge regression (KRR) in the polynomial scaling
regime.

Our main contributions:

e Precise formula for the sample-wise KRR learning

curves for dot-product kernel

e Characterizations of limiting empirical spectrum of the
dot-product matrices

e An extension of the above results to the convolutional
kernel

MULTI-PHASE LEARNING CURVE
Hierarchical Learning Process of KRR:
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Top figure: Test error as a function of log n/log d, where n is
the sample size and d is the input dimension.

The test error appears to remain unchanged when d*~! «
n <« d¥, for k € Z*, while transitions occur at n = d”.

Bottom figure: Zoomed-in views of the test error within
each transition region, corresponding to n x d* for k =
1,2.3.

The learning curves exhibit delicate non-monotonic be-
havior at different polynomial scaling regimes.

Challenge: Previous works analyzed test error when
d"1 « n « d¥, but the precise characterization of tran-
sitions among different phases is left unaddressed. The
main challenge lies in the non-linearity of kernel function.

KERNEL RIDGE REGRESSION (KRR)

Input: A collection of i.i.d. training samples:

n t.t.d.
{mivyi i=1 P.

Method: Learn a function f : R* » R in a reproducing
kernel Hilbert space (RKHS) by solving:

A

f = argmin Sy - F(2)] + Al f]% (1)
=1

f

where ||- | x is the RKHS norm associated with kernel func-
tion K (-,-).

Test Error: The performance of KRR can be captured by
the test error:

Err = [ [E(ynew ‘ mnew) - f(il?new)]z,

where (Zpew, Ynew ) ~ P is an independent test sample.

A HIGH-DIMENSIONAL MODEL

Polynomial Scaling Regime: We consider the setting
when d — oo, while for some r € Z™,

N(d,r)

n

> . € (0, 00).
Data: We consider

x; HL Ti-1 and y; = f(x;) +€;

where 74_; 1s the uniform distribution over d-dimensional
unit sphere $% ! and € """ N (0, 02).

Label function: The label function f has the following
spectral decomposition:

N (d,k)

f(®)=2 2 iiYej(x) (2)

k20 j=1
where the eigenfunction Yj;(x) is the jth order-%£ spheri-
cal harmonics, iy, are the eigenvalues and N (d, k) is the
total number of order-k spherical harmonics.
For k < r, {u;} are fixed and for k > r, {ux; } are random
satistying
fie Lr U5

N(d,k)
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Kernel: We consider dot-product kernel on S%*:
K(z,z")=h(z'z") (3)
and h(t) has the following spectral decomposition:

A(t) = 3 b Py(t)

where Py (t) is the order-k Legendre polynomials.

PRECISE FORMULA

xo(@) = [ (1+&) ua(t)dt

(@) = ag? f H(1+ £6) 2 g (1) dt

where 1, is the PDF of Marchenko—Pastur distribution
with ratio o and £ is defined as:
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Asymptotic bias and variance: Define the asymptotic bias
and variance associated with the rth order component as:

B, (a;) = XB(O‘T)]EE T f>2r

Vi(ag) = XV(O‘r)(JEEr T (762)

Theorem 1. Under the main assumptions of the paper, the test
error satisfies:

Err - B, (a;) + V. (a.). (4)

BIAS-VARIANCE TRADE-OFF

Bias: KRR perfectly learns all low-frequency (k < r) modes;
partially learns the critical frequency (k£ = r) modes; while
does not learn any high-frequency mode (k > r).

Variance: All the high-frequency modes play the roles as
the additive noise, while all the low-frequency modes do
not contribute to the variance.

Non-monoticity of learning curves: The bias is monoton-

ically decreasing, while the variance exhibits multiple de-

Bias-Variance Decomposition

Test MSE (linear scale)

N(d, =1) N(d, = 2) N(d, = 3)
m: # Training Samples (log scale)

N(d, <4)

SPECTRUM OF KERNEL MATRIX

The key of proof of Theorem 1 is computing the limiting
Stieltjes transform of empirical spectral distribution of the
rth component of the kernel matrix:

1

R(y) = =Tr(71 + K,)"

where v > 0 and K, = N(g S Y (X)Y(XT).

Theorem 2. Under the main assumption, the empirical spec-
trum of K, converges in distribution to the Marchenko-Pastur
distribution with ratio o = .

Gaussian Equivalence: The limiting spectrum of K, re-
mains unchanged, if Y, (X)) is replaced with an i.i.d Gaus-
sian matrix G of same size.
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CONVOLUTIONAL KERNEL

e Similar results can be obtained for convolutional
kernel.

 The eigenstructure of convolutional kernel matrix
not only depends on the order of eigenfunctions but
also on the topologies of neural network.

One-layer CNN Kernel:
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