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Optimization Generalization

Neural Tangent Kernel 
(NTK) Theory

• Couple to convex problem • Neural nets outperform their 
corresponding NTK in practice [1].


•  sample complexity lower bound 
for learning degree  polynomial [2].
dp

p

Training is lazy — neurons move small distance and interpolate training data.

Q: Can we encourage each neuron to move further and escape the NTK regime? 
Does this allow us to break NTK sample complexity lower bounds?
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•  for unknown target  .yi = f*(xi) f* : ℝd → ℝ

• 2-layer neural network of width :  , where .m f(x; W) = m−1/2aTσ(Wx) a ∈ ℝm, W ∈ ℝm×d

• Recall that the NTK is the linearization of network at initialization:

3

f(x, W) ≈ f(x, W0) + ⟨W − W0, ∇W f(x, W0)⟩

Feature map .ϕ : ℝd → ℝmd
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• Kernel regression theory: parameters first move in large eigenvalue directions of kernel matrix to 
learn signal, then move in small eigenvalue directions to overfit noise.

• Prior work [3] shows with  samples, large eigenvalue directions express degree  
polynomials.

n ≳ dk ≤ k

• We would like to move in large eigenvalue directions to learn the low degree signal, but not 
move in small eigenvalue directions (and hence move in null space instead).

Goal #1: Regularize to prevent movement in small eigenvalue directions. 
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Lemma (informal): Eigenspectrum of  can be partitioned into 3 groups:


 


Σ

Σ := 𝔼[ϕ(x)ϕ(x)T]

Σ = [Q1 Q2 Q3]
Λ1 ⋅ ⋅
⋅ Λ2 ⋅
⋅ ⋅ Λ3

QT
1

QT
2

QT
3

Large, express degree  polynomials.≤ k

Medium, blow up test predictions (bad)
Small, large movement minimally effects 
predictions (good)

Eigenvalue gap

Goal #2: Move in  directions, but minimally in  directions.Q3 Q2
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NTK is minimax optimal for dense polynomials, QuadNTK can learn sparse polynomials. 
Question: Can we jointly use both terms to learn a larger class of functions?
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Low-rank plus Sparse Signal: , f*(x) = f≤k(x) + fsp(x)

•  is dense degree  polynomial (low-degree term)f≤k k

•  (sparse term)fsp(x) =
R

∑
j=1

(βT
j x)k+1

Algorithm: Perturbed (noisy) GD on regularized loss . Regularizer is chosen specifically to 
encourage movement in “good” directions and prevent movement in “bad” directions.

Lλ(W)

Theorem (informal): With  samples and width , perturbed GD on the 
regularized loss converges to a minimizer with small test loss.

n ≳ dk m = poly(d)

• NTK or QuadNTK alone require  samples to learn . n ≥ Ω(dk+1) f*

• We obtain better sample complexity than either NTK or QuadNTK on their own  best of both 
worlds!

⟹
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1. Expressivity  

There exist network weights  with 
small regularized training loss.

W*

2. Landscape 

All second order stationary points of 
the regularized training loss are global 

minima.

3. Optimization


GD will find a second order stationary 
point in poly time.



Experiments
 trained on a degree 2 signal with  samples
fL + fQ d1.5
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Conclusion
• Feature covariance matrix has 3 sets of directions: Top directions fit degree  signal, 

middle directions are “bad” (NTK overfits or test predictions blow up), bottom directions are 
“good” and allow for large movement.

≤ k

• Regularization encourages movement in good directions.

• QuadNTK and NTK can jointly fit low-degree plus sparse signal. 

• End-to-end convergence and generalization guarantee with provable sample complexity 
improvement.

• Future Directions:

• How to leverage higher-order terms in Taylor expansion?

• How to increase depth to jointly learn a hierarchical representation?

• How does the QuadNTK relate to feature learning?
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Thanks for Listening!

References:

[1] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In 
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[2] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers neural networks in high dimension. The Annals of Statistics, 
49:1029–1054, 2021

[3] Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks: Memorization and generalization under lazy training, 2020. URL 
https://arxiv.org/ abs/2007.12826.

[4] Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation of wide neural networks. In International Conference on Learning 
Representations (ICLR), 2020.

11


