Adam Can Converge Without Any Modification On Update Rules

Yushun Zhang¹, Congliang Chen¹, Naichen Shi², Ruoyu Sun¹, Zhi-Quan Luo¹ 1: The Chinese University of Hong Kong, Shenzhen, China; 2: University of Michigan, US

Motivation

- Adam is one of the most popular algorithms in deep learning (DL). (It has received more than 110,000 citations)
- **Default** choice in many DL tasks:
 - NLP, GAN, RL, CV, GNN etc.

• However, the behavior of Adam is **poorly understood** in theory.

Preliminaries on Adam

- Consider unconstrained problem $\min_{x} f(x) \coloneqq \sum_{i=1}^{n} f_i(x)$
- In deep learning (DL) tasks, n often stands for sample size; x denotes trainable parameters
- Initialization $\nabla f(x_0), m_0 = \nabla f(x_0)$
- In the *k*-th iteration: sample τ_k from {1,2, ..., n}
 - Adaptive Momentum Estimator (Adam) [Kingma and Ba 15]:
 - $m_k = (1 \beta_1) \nabla f_{\tau_k}(x_k) + \beta_1 m_{k-1}$
 - $v_k = (1 \beta_2) \nabla f_{\tau_k}(\mathbf{x}_k) \circ \nabla f_{\tau_k}(\mathbf{x}_k) + \beta_2 v_{k-1}$

•
$$x_{k+1} = x_k - \eta_k \frac{m_k}{\sqrt{\nu_k}}$$

- Notations: \circ , $\sqrt{}$, and division are all element-wise operations.
- β_1 : Controls the 1st-order momentum m_k . Default setting: $\beta_1 = 0.9$
- β_2 : Controls the 2nd-order momentum v_k . Default setting: $\beta_2 = 0.999$

For A Long Time, Adam Is Criticized For Its Divergence Issue

Reddi et al.18 (ICLR Best paper): For any β_1 , β_2 s.t. $\beta_1 < \sqrt{\beta_2}$, there exists a problem such that Adam diverges

How to Ensure Convergence?

- A popular line of work: Modify the algorithm! For instance:
 - AMSGrad, AdaFom [Reddi et al. 18, Chen et al. 18]: keep $v_k \ge v_{k-1}$
 - AdaBound [Luo et al. 19]: Impose constraint: $v_k \in [C_l, C_u]$
- Although these Adam-variants fix the divergence issue, they often bring new issues. For instance:
 - AMSGrad and AdaFom are reported to be slow [Zhou et al. 18].
 - AdaBound introduces 2 extra hyperparameters.
- On the other hand, Adam remains exceptionally popular. It works well in practice! (either under default setting, or after proper tuning).

Adam Remains Exceptionally Popular Among Practitioners

- Though being criticized for divergence issue, Adam is still becoming one of the most influential algorithms in deep learning
- Partially because the new variants often bring new issues (e.g. converge slowly)
- *Disclaimer: contribution is not necessarily proportional to citations.

Further, The Divergence Theory Does Not Go Well with Practice

We find that the reported (β_1, β_2) in the successful applications **actually satisfy the divergence condition** $\beta_1 < \sqrt{\beta_2}$!

 β_1

0

Most deep learning tasks
(e.g. RL, NLP, CV, GAN, etc.):
$$\beta_1 = 0.9, \beta_2 = 0.999$$

Conditional GAN, DCGAN, etc: $_2 = 0.999$

Is there any gap between theory and practice? Why is the divergence not observed? We want to understand why.

$$\beta_1 = 0, \beta_2 = 0.999$$

We Revisit The Counter-example In Reddi et al. 18

• Reddi et al. 18 consider $\min_{x} f(x) \coloneqq \sum_{i=1}^{n} f_i(x)$

Proof(Reddi et al. 18): For any fixed β_1 , β_2 s.t. $\beta_1 < \sqrt{\beta_2}$, we can find an n to construct the divergence example f(x)

- An important (but often ignored) feature: Reddi et al. fix β_1, β_2 before picking the problem (*n* is changing).
- While in optimization field, parameters are often **problem-dependent** (e.g. the step size for GD). As such, the divergence is hardly surprising.

Conjecture: Adam might converge under fixed problem (fixed *n*).

Our Results: Adam Can Converge Without Any Modification

Theorem 1: Given problem $\min_{x} f(x) \coloneqq \sum_{i=1}^{n} f_i(x)$, under the practical assumptions (mildest so far), we prove that : when $\beta_2 \ge 1 - O\left(\frac{1-\beta_1^n}{n^{3.5}}\right)$, $\beta_1 < \sqrt{\beta_2} < 1$, Adam converges with rate $O\left(\frac{\log k}{\sqrt{k}}\right)$.*

Theorem 2: Consider the same setting as above, $\exists f(x)$, s.t., when (β_1, β_2) lies in the red region, the sequence $\{x_k\}$ and $\{f(x_k)\}$ of Adam diverges to ∞ .

Remark 1: Our convergence results covers any $\beta_1 \in [0,1)$, including the default setting. This is the first result showing that Adam can converge without any modification on its update rules.

Remark 2: We do not need stronger assumptions like bounded gradient assumptions $(|| \nabla f(x)|| < C)$ or bounded adaptor $(v_k \in [C_l, C_u])$.

Proof Idea: Identify certain periodic property of Adam' s momentum under random permutations and non-linear dynamics.

*: We further distinguish two sub-cases: convergence to neighborhood of stationary points and to the exact stationary points. Please check our paper for more detailed characterization.

Our Theory Matches Experiments

11

Implication to practitioners

- Case study: Bob is using Adam to train NNs. However, Adam with default hyperparameter fails in his tasks.
- Bob heard there is a well-known result that Adam can diverge.
- So he wonders: shall I keep tuning hyperparameter to make it work?
- Or shall I just give up and switch to other algorithms like AdaBound (which has 2 extra hyperparameters)?

Our suggestions:

- 1. Adam is still a theoretically justified algorithm. **Please use it confidently!**
- 2. Suggestions for hyperparameter tunning: First, tune up β_2 . Then, try different β_1 with $\beta_1 < \sqrt{\beta_2}$