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Contributions

Angelini et al. (2015) conjectured the existence of a sharp threshold on
model parameters for community detection in sparse hypergraphs
generated by a hypergraph stochastic block model.

We confirm the positive part of the conjecture, the possibility of
non-trivial reconstruction above the threshold, for the case of two
blocks by comparing the hypergraph stochastic block model with its
Erdös-Rényi counterpart.

We show the negative part of the conjecture by relating the model
with the so-called multi-type Galton-Watson hypertrees and
considering the broadcasting problem on these hypertrees.
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Introduction

Introduction

Hypergraph: H = (V, E), d-uniform hypergraph, loose cycles.

HSBM (denoted by Hd(n, pn, qn)): Let H = ([n], E) be a d-uniform
hypergraph with vertex set [n] := {1, 2, · · · , n} and hyperedge set E ,
σ := (σ1, · · · , σn) = {+1,−1}n the spins on [n]. Let Sn be the set of
all pairs (H, σ), we can generate a random pair (H, σ) from the finite
set Sn as follows:

First generate i.i.d random variables σi ∈ {+1,−1} uniformly for each
i ∈ [n].
Then, for the obtained σ = (σ1, · · · , σn), we generate a random
d-uniform hypergraph H where an hyperedge e = {i1, · · · , id} is
included independently with probability pn if σi1 = · · · = σid , and with
probability qn otherwise, where 0 < qn < pn < 1 (pn, qn possibly
depending on n).
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Introduction

Suppose C1 = {i ∈ [n]|σi = +1} and C2 = {i ∈ [n]|σi = −1} are two
communities in the hypergraph H. The goal of community detection
is to estimate the unknown spin σ up a sign flip by observing H only
from a sample (H, σ) drawn from Hd(n, pn, qn).

If d = 2, HSBM =⇒ (graph-based) SBM.

For SBM, Decelle et al. (2011) conjectured the existence of a sharp
threshold (called Kesten-Stigun threshold): if pn = a

n , qn = b
n , then

detection is possible if and only if (a− b)2 > 2(a+ b).

Proofs: Massoulié (2014), Mossel et al. (2015), Mossel et al. (2018),
Bordenave et al. (2015)
Algorithms: Bordenave et al. (2015), Stephan and Massoulié (2019),
Abbe et al. (2020)

For HSBM, Angelini et al. (2015) conjectured the existence of a sharp
threshold: if pn = a

( n
d−1)

, qn = b

( n
d−1)

, then detection is possible if and

only if β2 > α, where α = (d − 1)a+(2d−1−1)b
2d−1 , β = (d − 1) a−b

2d−1 .

Proof/Algorithm: Pal and Zhu (2021), Stephan and Zhu (2022)
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Main Results

Main Results

Let Hd(n,
pn+(2d−1−1)qn

2d−1 ) be the Erdös-Rényi model in which each

hyperedge is included with a common probability pn+(2d−1−1)qn
2d−1 . Let

Pn and P̃n denote the probability measures with respect to

Hd(n, pn, qn) and Hd(n,
pn+(2d−1−1)qn

2d−1 ), respectively.

Theorem 1 If β2 > α, then Pn and P̃n are asymptotically orthogonal.
Let Xζn be the number of loose cycles of length ζn and define

α̂n :=
d |E|( n
d−1

) , β̂n := (2ζnXζn − α̂ζn
n )

1
ζn ,

where ζn = ⌊log1/4 n⌋, |E| is the number of observed hyperedges, then
ân = 1

d−1(α̂n + (2d−1 − 1)β̂n) and b̂n = 1
d−1(α̂n − β̂n) are consistent

estimators for a and b, respectively.
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Main Results

Theorem 21 If β2 < α, then for any fixed vertices v1 and v2,
H ∼ Hd(n, pn, qn),

lim
n→∞

Pn(σv1 = +1|H, σv2) =
1

2
.

Pn and P̃n are mutually contiguous. Further more, there is no
consistent estimator for a and b.

1This theorem becomes suspicious now since Ludovic Stephan and Yizhe Zhu
pointed out a key mistake in our proofs.
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Building Blocks

Building Blocks

Let Xζn be the number of ζn-loose cycle of a hypergraph H. Suppose

ζn = O(log1/4(n)).

If H ∼ Hd(n, pn, qn), then Xζn
d−→ Pois(α

ζn+βζn

2ζn
);

If H ∼ Hd(n,
pn+(2d−1−1)qn

2d−1 ), then Xζn
d−→ Pois(α

ζn

2ζn
).

Suppose (T , ρ, τ) is a multi-type Galton-Watson hypertree where the
offspring distribution has mean α > 1, if β2 < α, then

lim
l→∞

P(τρ = +1|τ∂Tl
) =

1

2
a.s.

where τ∂Tl
= {τv |v ∈ ∂Tl}.
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Building Blocks

Theorem 5.2 (Pal and Zhu, 2021) Let (H, ρ, σ)l be the rooted
hypergraph (H, ρ, σ) truncated at generation l from ρ, (T , ρ, τ)l the
rooted hypertree (T , ρ, τ) truncated at generation l from ρ, then for
sufficiently large n, l = c log(n) with c log(α) < 1

4 and c is a
constant, there exists a coupling between (H, ρ, σ) and (T , ρ, τ) such
that (H, ρ, σ)l ≡ (T , ρ, τ)l with probability at least 1− n−1/5.

Let V1,V2,V3 be a random partition of the vertex set V(H) such that
V2 separates V1 and V3. If |V1 ∪ V2| = o(

√
n) for a.a.e H, then

P(σV1 |H, σV2) = (1 + o(1))P(σV1 |H, σV2∪V3)

for a.a.e. H and σ.
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Building Blocks

Theorem 4.1 (Wormald et al., 1999) Let Pn and P̃n be two fixed
sequences of probability measures on a common measurable space,
Yn = Pn

P̃n
the density of Pn with respect to P̃n. For i ≥ 1, let λi > 0,

δi ≥ −1, for each n, suppose random variables Xin satisfy

Xin
d−→ Wi as n → ∞ jointly for all i under P̃n, where Wi ∼ Pois(λi )

are independent Poisson variables;
For every non-negative integers s1, · · · , sk ,

Ẽ(Yn[X1n]s1 · · · [Xkn]sk )/ẼYn →
k∏

i=1

(λi (1 + δi ))
si .

∑
i≥1

λiδ
2
i < ∞;

ẼY 2
n /(ẼYn)

2 → exp(
∑
i≥1

λiδ
2
i ).

Then, P̃n and Pn are contiguous.
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Ẽ(Yn[X1n]s1 · · · [Xkn]sk )/ẼYn →
k∏

i=1

(λi (1 + δi ))
si .

∑
i≥1

λiδ
2
i < ∞;

ẼY 2
n /(ẼYn)

2 → exp(
∑
i≥1

λiδ
2
i ).

Then, P̃n and Pn are contiguous.
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Conclusion

Conclusion

We prove a conjecture on the community detection thresholds in the
HSBM with two blocks where the hypergraph is uniform and sparse.
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