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Al in sociotechnical system
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HEALTH RISK
ASSESSMENT

. . : .. Health risk assessment
Candidate evaluations for job positions

Driven by Al algorithms

Source: https://www.vecteezy.com/vector-art/2207767-health-risk-assessment-blue-gradient-concepticon




Algorithmic Discrimination
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Dissecting racial bias in an algorithm used to manage
the health of populations
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Racial bias in health algorithms

Obermeyer et al., 366 Science 447 (2019)




Group Fairness

No prediction disparities in different demographics.
Age, gender, race, hospital......
definitions.




Trivial Fair Decision

Coin flipping can trivially achieve fair
prediction.

- For any job application, the offer is
random.

The prediction should be informative!

Source: https://en.wikipedia.org/wiki/Coin_flipping
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Desiderata in fair learning

Informative.

- Learning the utility of the data

Fair

- No prediction disparities

Possibility to simultaneously achieve these two?
Depending on fairness notion.




Group sufficiency

Example in Health Al
Al algorithms predict the health-care score for each patient.

Higher score -> Sicker

(need to transfer to ICU)

Obermeyer et al., 366 Science 447 (2019)




Calibration Bias (Example in Health)

Black White
Patients Patients

Algorithm’s
Prediction

High

Risk

High
Risk

Ground Truth
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Severity of Black patients is under-estimated. Obermeyer et al., 366 Science 447 (2019)




Formal detfinition

m Group sufficiency: E|Y|f(X)] = E[Y|f (X), A]
m Mitigate bias across multiple (or many) subgroups

m Learning data utility with comparable accuracy




Proposed algorithm (informal)

1. Q:fair and informative predictor.
2. 5,,5,,5;5: different subgroup (e.g., data from different ages)
3. 04, Q,,03: subgroup specific predictors
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Step One

.S
-

(Q3
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Fix Q (the fair and informative predictor.)

-> Learn 0, 0, , Q5 from S, S, ,S; and Q (shared prior information).

Return: Q4, 0, , 03
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Step Two

Fix 04, 0, , 05 (the subgroup specific predictor.)

-> Learn Q (shared prior information) from Q4, @, , Q5 to be closed as possible.

Return: Q

Theoretically prove a fair and informative predictor (see paper).
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Application (toxic comments recognition)

Toxic

Comment Text

| applaud your father. He was a good man!
We need more like him.

As a Christian, | will not be patronizing any of
those businesses.

What do Black and LGBT people have to do
with bicycle licensing?

Government agencies track down foreign
baddies and protect law-abiding white
citizens. How many shows does that
describe?

Maybe you should learn to write a coherent
sentence so we can understand WTF your
point is.

Source: https://arxiv.org/pdf/2012.07421.pdf

Predict the comment being toxic
or not.

Machine Learning algorithms
showed biased results on the
different races.

13



Application (toxic comments recognition)
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Application (amazon

Reviewer ID (d) Review Text (x) Stars (y)
Reviewer 1 They are decent shoes. Material quality is good but the 5
color fades very quickly. Not as black in person as
shown.
Super easy to put together. Very well built. 5
Reviewer 2 This works well and was easy to install. The only thing | 4
don't like is that it tilts forward a little bit and | can't
= figure out how to stop it.
g Perfect for the trail camera 5
Reviewer | am disappointed in the quality of these. They have 1
10,000 significantly deteriorated in just a few uses. | am going
to stick with using foil.
Very sturdy especially at this price point. | have a 5

memory foam mattress on it with nothing underneath
and the slats perform well.

Source: https://arxiv.org/pdf/2012.07421.pdf

reviews)

- Predict the star from the review.

- Machine Learning algorithms showed
biased results on different clients.
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Ap p liC atiO n (Amazon reviews)
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Conclusions

m A novel provable framework:
- Mitigate group sufficiency bias;
- Preserve the utility of data;

Thank you!
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