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Inverse Focal loss:

Focal loss: 

Recently, it was shown that training with focal loss 
results in better calibration than cross entropy [1].

was originally proposed to improve the accuracy of 
classifiers by focusing on hard examples.

This is because, focal loss, while minimizing the 
KL divergence, increases the entropy of the prediction 
(using the parameter γ) to counter over-confidence.

[1] Mukhoti et al., Calibrating deep neural 

networks using focal loss. In NeurIPS 2020.

serves the opposite purpose of focal loss. It helps recover from 
under-confidence by pushing the confidence scores even higher.
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2. Given some correspondence, how do we arrive at the appropriate values of γ that will lead to 

the best calibration?

Challenges:
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we can manipulate during training using the parameter γ) and the confidence of the validation or 
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Proposed AdaFocal loss and Gamma-update rule:

Based on the correspondence, the proposed AdaFocal loss function is given by

The loss function switches between Focal and inverse-Focal loss based on the value of γ in each bin.

The gamma-update rule is given by

which adaptively modifies γ based on γ_{t-1} from the previous time step and the magnitude 
of the mis-calibration C_val – A_val on the validation set.
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Experiments:
Datasets (4 Image recognition and 1 text classification):

1. CIFAR-10

2. CIFAR-100

3. Tiny-ImageNet

4. ImageNet

5. 20 Newsgroup

Neural network architectures:

1. ResNet50, ResNet-100

2. Wide-ResNet-26-10

3. DenseNet-121

4. Global-pooling CNN

5. Pre-trained BERT
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Among “calibration-during-training” methods, AdaFocal achieves the best result in 14/15 cases.



Test Set ECE (all results)

AdaFocal produces inherently calibrated models that benefit further from post-hoc calibration 
such as temperature scaling, outperforming in 12/15 cases.
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Thank you!


