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Action Spaces in Clinical Problems

Mech Vent Weaning
(Prasad et al., UAI 2017)

|A| = 2 × 4 = 8

MV setting

Sedation level

AI Clinician / MIMIC-sepsis
(Komorowski et al., Nature Medicine 2018)

|A| = 5×5 = 25

Commonly exhibit combinatorial structures

2

Acute Dyspnea
(ongoing project at UM)

|A| = 25 = 32

{0,1} Antibiotics

{0,1} Anticoagulants

{0,1} Fluids

{0,1} Diuretics

{0,1} Steroids
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Leveraging Factored Action Spaces for Offline RL in Healthcare

our proposed factored approach outperforms a non-factored
baseline when the sample size is limited, even when the
theoretical assumptions (around the validity of a linear de-
composition) are not satisfied. Qualitatively, in the real-data
experiment, our approach gives rise to policies that better
capture the effect of less frequently observed treatment com-
binations. In summary, our contributions are as follows:

• We study a linear Q-function decomposition induced
by factored action spaces, noting its theoretical proper-
ties with respect to bias due to approximation error.

• Even in the presence of bias, we highlight that our
approach leads to better sample efficiency, without
necessarily sacrificing policy optimality.

• Through empirical experiments on both simulated and
real-life RL tasks, we demonstrate that our approach
can learn better policies.

Our work provides both theoretical insights and empirical
evidence for RL practitioners to consider this simple linear
decomposition approach in RL problems with combinatorial
action spaces, especially when data are limited in an offline
setting, and when domain knowledge suggests the linear
decomposition approximately holds.

2. Problem Setup
We consider Markov decision processes (MDPs) defined
by a tuple M = (S, A, p, r, µ0, �), where S and A are
the state and action spaces, p(s0|s, a) and r(s, a) are the
transition and instantaneous reward functions, µ0(s) is
the initial state distribution, and � 2 [0, 1] is the dis-
count factor. A probabilistic policy ⇡(a|s) specifies a map-
ping from each state to a probability distribution over ac-
tions. For a deterministic policy, ⇡(s) refers to the ac-
tion with ⇡(a|s) = 1. The state-value function is defined
as V ⇡(s) = E⇡EM

⇥P1
t=1 �t�1rt | s1 = s

⇤
. The action-

value function, Q⇡(s, a), is defined by further restricting
the action taken from the starting state. The goal of RL is to
find a policy ⇡⇤ = arg max⇡ Es⇠µ0 [V

⇡(s)] (or an approxi-
mation) that has the maximum expected performance.

2.1. Factored Action Spaces

While the standard MDP definition abstracts away the un-
derlying structure within the action space A, in this paper,
we explicitly express a factored action space as a Carte-
sian product of D sub-action spaces, A =

ND
d=1 Ad =

A1 ⇥ · · · ⇥ AD. We use a vector symbol a 2 A to denote
each action, which can also be written as a vector of sub-
actions a = [a1, . . . , aD], with each ad 2 Ad. In general,
each sub-action space can be discrete or continuous, and the
cardinalities of discrete sub-action spaces are not required
to be the same. For clarity of analysis and illustration, we
primarily consider discrete sub-action spaces; extensions to
continuous sub-action spaces are straightforward.

2.2. Linear Decomposition of Q Function

The traditional factored MDP literature almost exclusively
considers state space factorization (Koller & Parr, 1999).
In contrast, here we focus on action space factorization.
Specifically, our approach considers a linear decomposition
of the Q function, as illustrated in Figure 1b:

Q⇡(s,a) =
DX

d=1

qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to
condition on the full state space s and only one sub-action
ad. While similar forms of decomposition have been used
in past work, there are key differences in how the summa-
tion components are parameterized. In the multi-agent RL
literature, each component qd(sd, ad) can only condition on
the corresponding state space of the d-th agent (e.g., Sune-
hag et al., 2018; Rashid et al., 2018). The decomposition
in Eqn. (1) also differs from a related form of decompo-
sition considered by Juozapaitis et al. (2019) where each
component qd(s,a) can condition on the full action a.

To the best of our knowledge, we are the first to consider
this specific form of Q-function decomposition; in addition,
we are the first to apply this idea to offline RL. The code to
reproduce all experiments is provided in the supplement.

3. Theoretical Analyses
In this section, we study the theoretical properties of the
linear Q-function decomposition induced by factored action
spaces. We first discuss the sufficient and necessary condi-
tions for our approach to introduce no bias, and then analyze
settings under which our approach can reduce variance with-
out leading to suboptimal policy performance, even in the
presence of bias.

3.1. Sufficient Condition for Zero Bias

If we consider the total return of D MDPs running in par-
allel, where each MDP is defined by their respective state
space Sd and action space Ad, then the desired linear de-
composition holds for the MDP defined by the joint state
space

ND
d=1 Sd and joint action space

ND
d=1 Ad (formally

discussed in Appendix A.1). However, this relies on an
explicit, known state space factorization, limiting its appli-
cability. In contrast, we now present a generalization that
forgoes the explicit factorization of the state space by mak-
ing use of state abstractions. Intuitively, the MDP should
have some implicit factorization, such that it is homomor-
phic to D parallel MDPs. It is, however, not a requirement
that this factorization is known, as long as it exists.

Theorem 1. Given an MDP defined by S, A, p, r and a
policy ⇡ : S ! �(A), where A =

ND
d=1 Ad is a factored

select
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Combinatorial action space → Typical Q function

select

(a)

(b)

combinatorial action space

factored action space

4

See paper for details on related works

Inefficient?
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our proposed factored approach outperforms a non-factored
baseline when the sample size is limited, even when the
theoretical assumptions (around the validity of a linear de-
composition) are not satisfied. Qualitatively, in the real-data
experiment, our approach gives rise to policies that better
capture the effect of less frequently observed treatment com-
binations. In summary, our contributions are as follows:

• We study a linear Q-function decomposition induced
by factored action spaces, noting its theoretical proper-
ties with respect to bias due to approximation error.

• Even in the presence of bias, we highlight that our
approach leads to better sample efficiency, without
necessarily sacrificing policy optimality.

• Through empirical experiments on both simulated and
real-life RL tasks, we demonstrate that our approach
can learn better policies.

Our work provides both theoretical insights and empirical
evidence for RL practitioners to consider this simple linear
decomposition approach in RL problems with combinatorial
action spaces, especially when data are limited in an offline
setting, and when domain knowledge suggests the linear
decomposition approximately holds.

2. Problem Setup
We consider Markov decision processes (MDPs) defined
by a tuple M = (S, A, p, r, µ0, �), where S and A are
the state and action spaces, p(s0|s, a) and r(s, a) are the
transition and instantaneous reward functions, µ0(s) is
the initial state distribution, and � 2 [0, 1] is the dis-
count factor. A probabilistic policy ⇡(a|s) specifies a map-
ping from each state to a probability distribution over ac-
tions. For a deterministic policy, ⇡(s) refers to the ac-
tion with ⇡(a|s) = 1. The state-value function is defined
as V ⇡(s) = E⇡EM

⇥P1
t=1 �t�1rt | s1 = s

⇤
. The action-

value function, Q⇡(s, a), is defined by further restricting
the action taken from the starting state. The goal of RL is to
find a policy ⇡⇤ = arg max⇡ Es⇠µ0 [V

⇡(s)] (or an approxi-
mation) that has the maximum expected performance.

2.1. Factored Action Spaces

While the standard MDP definition abstracts away the un-
derlying structure within the action space A, in this paper,
we explicitly express a factored action space as a Carte-
sian product of D sub-action spaces, A =

ND
d=1 Ad =

A1 ⇥ · · · ⇥ AD. We use a vector symbol a 2 A to denote
each action, which can also be written as a vector of sub-
actions a = [a1, . . . , aD], with each ad 2 Ad. In general,
each sub-action space can be discrete or continuous, and the
cardinalities of discrete sub-action spaces are not required
to be the same. For clarity of analysis and illustration, we
primarily consider discrete sub-action spaces; extensions to
continuous sub-action spaces are straightforward.

2.2. Linear Decomposition of Q Function

The traditional factored MDP literature almost exclusively
considers state space factorization (Koller & Parr, 1999).
In contrast, here we focus on action space factorization.
Specifically, our approach considers a linear decomposition
of the Q function, as illustrated in Figure 1b:

Q⇡(s,a) =
DX

d=1

qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to
condition on the full state space s and only one sub-action
ad. While similar forms of decomposition have been used
in past work, there are key differences in how the summa-
tion components are parameterized. In the multi-agent RL
literature, each component qd(sd, ad) can only condition on
the corresponding state space of the d-th agent (e.g., Sune-
hag et al., 2018; Rashid et al., 2018). The decomposition
in Eqn. (1) also differs from a related form of decompo-
sition considered by Juozapaitis et al. (2019) where each
component qd(s,a) can condition on the full action a.

To the best of our knowledge, we are the first to consider
this specific form of Q-function decomposition; in addition,
we are the first to apply this idea to offline RL. The code to
reproduce all experiments is provided in the supplement.

3. Theoretical Analyses
In this section, we study the theoretical properties of the
linear Q-function decomposition induced by factored action
spaces. We first discuss the sufficient and necessary condi-
tions for our approach to introduce no bias, and then analyze
settings under which our approach can reduce variance with-
out leading to suboptimal policy performance, even in the
presence of bias.

3.1. Sufficient Condition for Zero Bias
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discussed in Appendix A.1). However, this relies on an
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cability. In contrast, we now present a generalization that
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ing use of state abstractions. Intuitively, the MDP should
have some implicit factorization, such that it is homomor-
phic to D parallel MDPs. It is, however, not a requirement
that this factorization is known, as long as it exists.
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Our Contributions

● Provide new theoretical insights on its applicability

● Conduct empirical evaluations in the context of offline RL for healthcare

We develop an approach for offline RL with factored action spaces 
by learning linearly decomposable Q-functions.  
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our proposed factored approach outperforms a non-factored
baseline when the sample size is limited, even when the
theoretical assumptions (around the validity of a linear de-
composition) are not satisfied. Qualitatively, in the real-data
experiment, our approach gives rise to policies that better
capture the effect of less frequently observed treatment com-
binations. In summary, our contributions are as follows:

• We study a linear Q-function decomposition induced
by factored action spaces, noting its theoretical proper-
ties with respect to bias due to approximation error.

• Even in the presence of bias, we highlight that our
approach leads to better sample efficiency, without
necessarily sacrificing policy optimality.

• Through empirical experiments on both simulated and
real-life RL tasks, we demonstrate that our approach
can learn better policies.

Our work provides both theoretical insights and empirical
evidence for RL practitioners to consider this simple linear
decomposition approach in RL problems with combinatorial
action spaces, especially when data are limited in an offline
setting, and when domain knowledge suggests the linear
decomposition approximately holds.

2. Problem Setup
We consider Markov decision processes (MDPs) defined
by a tuple M = (S, A, p, r, µ0, �), where S and A are
the state and action spaces, p(s0|s, a) and r(s, a) are the
transition and instantaneous reward functions, µ0(s) is
the initial state distribution, and � 2 [0, 1] is the dis-
count factor. A probabilistic policy ⇡(a|s) specifies a map-
ping from each state to a probability distribution over ac-
tions. For a deterministic policy, ⇡(s) refers to the ac-
tion with ⇡(a|s) = 1. The state-value function is defined
as V ⇡(s) = E⇡EM

⇥P1
t=1 �t�1rt | s1 = s

⇤
. The action-

value function, Q⇡(s, a), is defined by further restricting
the action taken from the starting state. The goal of RL is to
find a policy ⇡⇤ = arg max⇡ Es⇠µ0 [V

⇡(s)] (or an approxi-
mation) that has the maximum expected performance.

2.1. Factored Action Spaces

While the standard MDP definition abstracts away the un-
derlying structure within the action space A, in this paper,
we explicitly express a factored action space as a Carte-
sian product of D sub-action spaces, A =

ND
d=1 Ad =

A1 ⇥ · · · ⇥ AD. We use a vector symbol a 2 A to denote
each action, which can also be written as a vector of sub-
actions a = [a1, . . . , aD], with each ad 2 Ad. In general,
each sub-action space can be discrete or continuous, and the
cardinalities of discrete sub-action spaces are not required
to be the same. For clarity of analysis and illustration, we
primarily consider discrete sub-action spaces; extensions to
continuous sub-action spaces are straightforward.

2.2. Linear Decomposition of Q Function

The traditional factored MDP literature almost exclusively
considers state space factorization (Koller & Parr, 1999).
In contrast, here we focus on action space factorization.
Specifically, our approach considers a linear decomposition
of the Q function, as illustrated in Figure 1b:

Q⇡(s,a) =
DX

d=1

qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to
condition on the full state space s and only one sub-action
ad. While similar forms of decomposition have been used
in past work, there are key differences in how the summa-
tion components are parameterized. In the multi-agent RL
literature, each component qd(sd, ad) can only condition on
the corresponding state space of the d-th agent (e.g., Sune-
hag et al., 2018; Rashid et al., 2018). The decomposition
in Eqn. (1) also differs from a related form of decompo-
sition considered by Juozapaitis et al. (2019) where each
component qd(s,a) can condition on the full action a.

To the best of our knowledge, we are the first to consider
this specific form of Q-function decomposition; in addition,
we are the first to apply this idea to offline RL. The code to
reproduce all experiments is provided in the supplement.

3. Theoretical Analyses
In this section, we study the theoretical properties of the
linear Q-function decomposition induced by factored action
spaces. We first discuss the sufficient and necessary condi-
tions for our approach to introduce no bias, and then analyze
settings under which our approach can reduce variance with-
out leading to suboptimal policy performance, even in the
presence of bias.

3.1. Sufficient Condition for Zero Bias

If we consider the total return of D MDPs running in par-
allel, where each MDP is defined by their respective state
space Sd and action space Ad, then the desired linear de-
composition holds for the MDP defined by the joint state
space

ND
d=1 Sd and joint action space

ND
d=1 Ad (formally

discussed in Appendix A.1). However, this relies on an
explicit, known state space factorization, limiting its appli-
cability. In contrast, we now present a generalization that
forgoes the explicit factorization of the state space by mak-
ing use of state abstractions. Intuitively, the MDP should
have some implicit factorization, such that it is homomor-
phic to D parallel MDPs. It is, however, not a requirement
that this factorization is known, as long as it exists.

Theorem 1. Given an MDP defined by S, A, p, r and a
policy ⇡ : S ! �(A), where A =

ND
d=1 Ad is a factored

linear Q-function decomposition
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Sufficient Conditions for Zero Bias
D “parallel” MDPs

…yet are not necessary
→ implicitly factorized MDP via state abstractions
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our proposed factored approach outperforms a non-factored
baseline when the sample size is limited, even when the
theoretical assumptions (around the validity of a linear de-
composition) are not satisfied. Qualitatively, in the real-data
experiment, our approach gives rise to policies that better
capture the effect of less frequently observed treatment com-
binations. In summary, our contributions are as follows:

• We study a linear Q-function decomposition induced
by factored action spaces, noting its theoretical proper-
ties with respect to bias due to approximation error.

• Even in the presence of bias, we highlight that our
approach leads to better sample efficiency, without
necessarily sacrificing policy optimality.

• Through empirical experiments on both simulated and
real-life RL tasks, we demonstrate that our approach
can learn better policies.

Our work provides both theoretical insights and empirical
evidence for RL practitioners to consider this simple linear
decomposition approach in RL problems with combinatorial
action spaces, especially when data are limited in an offline
setting, and when domain knowledge suggests the linear
decomposition approximately holds.

2. Problem Setup
We consider Markov decision processes (MDPs) defined
by a tuple M = (S, A, p, r, µ0, �), where S and A are
the state and action spaces, p(s0|s, a) and r(s, a) are the
transition and instantaneous reward functions, µ0(s) is
the initial state distribution, and � 2 [0, 1] is the dis-
count factor. A probabilistic policy ⇡(a|s) specifies a map-
ping from each state to a probability distribution over ac-
tions. For a deterministic policy, ⇡(s) refers to the ac-
tion with ⇡(a|s) = 1. The state-value function is defined
as V ⇡(s) = E⇡EM

⇥P1
t=1 �t�1rt | s1 = s

⇤
. The action-

value function, Q⇡(s, a), is defined by further restricting
the action taken from the starting state. The goal of RL is to
find a policy ⇡⇤ = arg max⇡ Es⇠µ0 [V

⇡(s)] (or an approxi-
mation) that has the maximum expected performance.

2.1. Factored Action Spaces

While the standard MDP definition abstracts away the un-
derlying structure within the action space A, in this paper,
we explicitly express a factored action space as a Carte-
sian product of D sub-action spaces, A =

ND
d=1 Ad =

A1 ⇥ · · · ⇥ AD. We use a vector symbol a 2 A to denote
each action, which can also be written as a vector of sub-
actions a = [a1, . . . , aD], with each ad 2 Ad. In general,
each sub-action space can be discrete or continuous, and the
cardinalities of discrete sub-action spaces are not required
to be the same. For clarity of analysis and illustration, we
primarily consider discrete sub-action spaces; extensions to
continuous sub-action spaces are straightforward.

2.2. Linear Decomposition of Q Function

The traditional factored MDP literature almost exclusively
considers state space factorization (Koller & Parr, 1999).
In contrast, here we focus on action space factorization.
Specifically, our approach considers a linear decomposition
of the Q function, as illustrated in Figure 1b:

Q⇡(s,a) =
DX

d=1

qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to
condition on the full state space s and only one sub-action
ad. While similar forms of decomposition have been used
in past work, there are key differences in how the summa-
tion components are parameterized. In the multi-agent RL
literature, each component qd(sd, ad) can only condition on
the corresponding state space of the d-th agent (e.g., Sune-
hag et al., 2018; Rashid et al., 2018). The decomposition
in Eqn. (1) also differs from a related form of decompo-
sition considered by Juozapaitis et al. (2019) where each
component qd(s,a) can condition on the full action a.

To the best of our knowledge, we are the first to consider
this specific form of Q-function decomposition; in addition,
we are the first to apply this idea to offline RL. The code to
reproduce all experiments is provided in the supplement.

3. Theoretical Analyses
In this section, we study the theoretical properties of the
linear Q-function decomposition induced by factored action
spaces. We first discuss the sufficient and necessary condi-
tions for our approach to introduce no bias, and then analyze
settings under which our approach can reduce variance with-
out leading to suboptimal policy performance, even in the
presence of bias.

3.1. Sufficient Condition for Zero Bias

If we consider the total return of D MDPs running in par-
allel, where each MDP is defined by their respective state
space Sd and action space Ad, then the desired linear de-
composition holds for the MDP defined by the joint state
space

ND
d=1 Sd and joint action space

ND
d=1 Ad (formally

discussed in Appendix A.1). However, this relies on an
explicit, known state space factorization, limiting its appli-
cability. In contrast, we now present a generalization that
forgoes the explicit factorization of the state space by mak-
ing use of state abstractions. Intuitively, the MDP should
have some implicit factorization, such that it is homomor-
phic to D parallel MDPs. It is, however, not a requirement
that this factorization is known, as long as it exists.

Theorem 1. Given an MDP defined by S, A, p, r and a
policy ⇡ : S ! �(A), where A =

ND
d=1 Ad is a factored

linear Q-function decomposition

“When does it work?”
Does linear decomposition always exist? Will using linear decomposition introduce bias? 

See paper for details
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Proposition 4. There exist an MDP M and a policy ⇡ for
which Q⇡

M decomposes as Eqn. (1) but ⇡ does not satisfy
Eqn. (4).
Example 2 (Modified two-dimensional chains). In Figure 3,
none of the three conditions in Theorem 1 are satisfied, yet
for every state, there exists a linear decomposition of Q-
values in the form of Eqn. (1). /

s0,0

s0,1

s1,0

s1,1

+1

+1

+1 +1

+1

+2

(1 � �)

z0,? z1,?
+1

z?,0

z?,1

+1

�x

�y (c)

(a)

(b)

Figure 3. This MDP is similar to Example 1 (except it does not
have state s̃0,1) using the same abstractions � = [�x, �y]. The Q-
function and decomposition are exactly the same as in the previous
example. However, none of the sufficient conditions are satisfied.
(a) The transition function does not satisfy Eqn. (2) because action
%= [!, "] from s0,1 does not move right (! under �x) to s1,1

and instead moves back to state s0,1. (b) The reward function does
not satisfy Eqn. (3) as the reward of (1� �) for action%= [!, "]
from s0,1 is not the sum of +1 (! from z0,? under �x) and 0 ("
from z?,1 under �y). (c) The policy does not satisfy Eqn. (4) as
it takes different sub-actions from z0,? under �x (- from s0,0

specifies vs. % from s0,1 specifies!).

Therefore, while Theorem 1 imposes a rather stringent set
of assumptions on the MDP structure (transitions, rewards)
and the policy, violations of these conditions do not preclude
the linear parameterization of the Q-function from being an
unbiased estimator.

3.3. How Does Bias Affect Policy Learning?

When the sufficient conditions do not hold, using a linear
parameterization in Eqn. (1) may incur nonzero approxi-
mation error when approximating the Q-function. This can
affect the performance of the learned policy (error bounds
in Appendix A.3). Despite this potential bias, our approach
always leads to a reduction in the variance of the estimator.
In addition, as we will demonstrate, the bias incurred does
not necessarily result in suboptimal policy performance.

I Bias-Variance Trade-off. While how much bias is
introduced depends on the problem structure, the ben-
efit of variance reduction is immediate. Intuitively, to
learn the Q-function of a tabular MDP with state space
S and action space A =

ND
d=1 Ad, the linear approx-

imation reduces the number of free parameters from
|S||A| = |S|(

QD
d=1 |Ad|) (entries of the Q-value table),

to |S|
⇣
(
PD

d=1 |Ad|) � D + 1
⌘

(see Appendix A.4). This
reduces the complexity of the hypothesis class from ex-
ponential in D to linear in D. To analyze the variance
reduction, we compare the Rademacher complexity of the
Q-function approximator using the factored-action space
with that of the full combinatorial action space (formally
discussed in Appendix A.5).
Proposition 5. Using the linear Q-function decomposition
for the factored action space in Eqn. (1) has a smaller lower
bound on the empirical Rademacher complexity compared
to learning the Q-function in the combinatorial action space.
Proposition 5 shows that our linear Q-function parameter-
ization leads to a smaller function space, which implies a
lower-variance estimator. Hence, the factored-action learn-
ing algorithm can make more efficient use of limited sam-
ples, leading to an interesting bias-variance trade-off that is
especially beneficial for offline settings with limited data.

I Bias 6) Suboptimal Performance. When the linear de-
composition is biased, the inaccurate Q-function may still
be used to identify the value-maximizing action. In this
section, we identify scenarios under which this occurs.
Proposition 6. There exists an MDP with optimal Q-
function Q⇤ and its approximation Q̂ according to
Eqn. (1), such that Q̂ 6= Q⇤ and yet arg maxa Q̂(a) =
arg maxa Q⇤(a).
Justification. To focus the analysis on properties unique
to our factored Q-decomposition approach, we consider a
simple bandit setting. Consider a 1-step bandit problem
with a single state and the same action space as before,
A = Ax ⇥ Ay. Taking an action a = [ax, ay] leads the
agent to move diagonally and terminate immediately. Since
there are no transitions, the Q-values of any policy are sim-
ply the immediate reward from each action, Q(a) = r(a).
We assume the reward function is defined as in Figure 4a
(see Appendix A.6 for a procedure to standardize any re-
ward function). Applying our approach amounts to solving
for the parameters rLeft, rRight, rDown, rUp of the linear system in
Figure 4b, while dropping the interaction term rInteract, result-
ing in omitted-variable bias (Wooldridge, 2015). Solving
the system gives the approximate value function where the
interaction term � appears in the approximation Q̂ for all
arms (Figure 4c, details in Appendix A.7).

Note that Q̂ = Q⇤ only when � = 0, i.e., there is no in-
teraction between the two sub-actions. We first consider
the family of problems with ↵ = 1 and � 2 [�4, 4].
In Figure 5, we measure the value approximation error
RMSE(Q⇤, Q̂), as well as the suboptimality V ⇡⇤ � V ⇡̂ =
maxa Q⇤(a) � Q⇤(arg maxa Q̂(a)) of the greedy policy
Q̂ compared to ⇡⇤. As expected, when � = 0, Q̂ is unbiased
and has zero approximation error. When � 6= 0, Q̂ is biased;
however, when � � �1, Q̂ corresponds to a policy that
correctly identifies the optimal action.165
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Proposition 4. There exist an MDP M and a policy ⇡ for
which Q⇡

M decomposes as Eqn. (1) but ⇡ does not satisfy
Eqn. (4).
Example 2 (Modified two-dimensional chains). In Figure 3,
none of the three conditions in Theorem 1 are satisfied, yet
for every state, there exists a linear decomposition of Q-
values in the form of Eqn. (1). /

s0,0

s0,1

s1,0

s1,1

+1

+1

+1 +1

+1

+2

(1 � �)

z0,? z1,?
+1

z?,0

z?,1

+1

�x

�y (c)

(a)

(b)

Figure 3. This MDP is similar to Example 1 (except it does not
have state s̃0,1) using the same abstractions � = [�x, �y]. The Q-
function and decomposition are exactly the same as in the previous
example. However, none of the sufficient conditions are satisfied.
(a) The transition function does not satisfy Eqn. (2) because action
%= [!, "] from s0,1 does not move right (! under �x) to s1,1

and instead moves back to state s0,1. (b) The reward function does
not satisfy Eqn. (3) as the reward of (1� �) for action%= [!, "]
from s0,1 is not the sum of +1 (! from z0,? under �x) and 0 ("
from z?,1 under �y). (c) The policy does not satisfy Eqn. (4) as
it takes different sub-actions from z0,? under �x (- from s0,0

specifies vs. % from s0,1 specifies!).

Therefore, while Theorem 1 imposes a rather stringent set
of assumptions on the MDP structure (transitions, rewards)
and the policy, violations of these conditions do not preclude
the linear parameterization of the Q-function from being an
unbiased estimator.

3.3. How Does Bias Affect Policy Learning?

When the sufficient conditions do not hold, using a linear
parameterization in Eqn. (1) may incur nonzero approxi-
mation error when approximating the Q-function. This can
affect the performance of the learned policy (error bounds
in Appendix A.3). Despite this potential bias, our approach
always leads to a reduction in the variance of the estimator.
In addition, as we will demonstrate, the bias incurred does
not necessarily result in suboptimal policy performance.

I Bias-Variance Trade-off. While how much bias is
introduced depends on the problem structure, the ben-
efit of variance reduction is immediate. Intuitively, to
learn the Q-function of a tabular MDP with state space
S and action space A =

ND
d=1 Ad, the linear approx-

imation reduces the number of free parameters from
|S||A| = |S|(

QD
d=1 |Ad|) (entries of the Q-value table),

to |S|
⇣
(
PD

d=1 |Ad|) � D + 1
⌘

(see Appendix A.4). This
reduces the complexity of the hypothesis class from ex-
ponential in D to linear in D. To analyze the variance
reduction, we compare the Rademacher complexity of the
Q-function approximator using the factored-action space
with that of the full combinatorial action space (formally
discussed in Appendix A.5).
Proposition 5. Using the linear Q-function decomposition
for the factored action space in Eqn. (1) has a smaller lower
bound on the empirical Rademacher complexity compared
to learning the Q-function in the combinatorial action space.
Proposition 5 shows that our linear Q-function parameter-
ization leads to a smaller function space, which implies a
lower-variance estimator. Hence, the factored-action learn-
ing algorithm can make more efficient use of limited sam-
ples, leading to an interesting bias-variance trade-off that is
especially beneficial for offline settings with limited data.

I Bias 6) Suboptimal Performance. When the linear de-
composition is biased, the inaccurate Q-function may still
be used to identify the value-maximizing action. In this
section, we identify scenarios under which this occurs.
Proposition 6. There exists an MDP with optimal Q-
function Q⇤ and its approximation Q̂ according to
Eqn. (1), such that Q̂ 6= Q⇤ and yet arg maxa Q̂(a) =
arg maxa Q⇤(a).
Justification. To focus the analysis on properties unique
to our factored Q-decomposition approach, we consider a
simple bandit setting. Consider a 1-step bandit problem
with a single state and the same action space as before,
A = Ax ⇥ Ay. Taking an action a = [ax, ay] leads the
agent to move diagonally and terminate immediately. Since
there are no transitions, the Q-values of any policy are sim-
ply the immediate reward from each action, Q(a) = r(a).
We assume the reward function is defined as in Figure 4a
(see Appendix A.6 for a procedure to standardize any re-
ward function). Applying our approach amounts to solving
for the parameters rLeft, rRight, rDown, rUp of the linear system in
Figure 4b, while dropping the interaction term rInteract, result-
ing in omitted-variable bias (Wooldridge, 2015). Solving
the system gives the approximate value function where the
interaction term � appears in the approximation Q̂ for all
arms (Figure 4c, details in Appendix A.7).

Note that Q̂ = Q⇤ only when � = 0, i.e., there is no in-
teraction between the two sub-actions. We first consider
the family of problems with ↵ = 1 and � 2 [�4, 4].
In Figure 5, we measure the value approximation error
RMSE(Q⇤, Q̂), as well as the suboptimality V ⇡⇤ � V ⇡̂ =
maxa Q⇤(a) � Q⇤(arg maxa Q̂(a)) of the greedy policy
Q̂ compared to ⇡⇤. As expected, when � = 0, Q̂ is unbiased
and has zero approximation error. When � 6= 0, Q̂ is biased;
however, when � � �1, Q̂ corresponds to a policy that
correctly identifies the optimal action.
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Proposition 4. There exist an MDP M and a policy ⇡ for
which Q⇡

M decomposes as Eqn. (1) but ⇡ does not satisfy
Eqn. (4).
Example 2 (Modified two-dimensional chains). In Figure 3,
none of the three conditions in Theorem 1 are satisfied, yet
for every state, there exists a linear decomposition of Q-
values in the form of Eqn. (1). /
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Figure 3. This MDP is similar to Example 1 (except it does not
have state s̃0,1) using the same abstractions � = [�x, �y]. The Q-
function and decomposition are exactly the same as in the previous
example. However, none of the sufficient conditions are satisfied.
(a) The transition function does not satisfy Eqn. (2) because action
%= [!, "] from s0,1 does not move right (! under �x) to s1,1

and instead moves back to state s0,1. (b) The reward function does
not satisfy Eqn. (3) as the reward of (1� �) for action%= [!, "]
from s0,1 is not the sum of +1 (! from z0,? under �x) and 0 ("
from z?,1 under �y). (c) The policy does not satisfy Eqn. (4) as
it takes different sub-actions from z0,? under �x (- from s0,0

specifies vs. % from s0,1 specifies!).

Therefore, while Theorem 1 imposes a rather stringent set
of assumptions on the MDP structure (transitions, rewards)
and the policy, violations of these conditions do not preclude
the linear parameterization of the Q-function from being an
unbiased estimator.

3.3. How Does Bias Affect Policy Learning?

When the sufficient conditions do not hold, using a linear
parameterization in Eqn. (1) may incur nonzero approxi-
mation error when approximating the Q-function. This can
affect the performance of the learned policy (error bounds
in Appendix A.3). Despite this potential bias, our approach
always leads to a reduction in the variance of the estimator.
In addition, as we will demonstrate, the bias incurred does
not necessarily result in suboptimal policy performance.

I Bias-Variance Trade-off. While how much bias is
introduced depends on the problem structure, the ben-
efit of variance reduction is immediate. Intuitively, to
learn the Q-function of a tabular MDP with state space
S and action space A =

ND
d=1 Ad, the linear approx-

imation reduces the number of free parameters from
|S||A| = |S|(

QD
d=1 |Ad|) (entries of the Q-value table),

to |S|
⇣
(
PD

d=1 |Ad|) � D + 1
⌘

(see Appendix A.4). This
reduces the complexity of the hypothesis class from ex-
ponential in D to linear in D. To analyze the variance
reduction, we compare the Rademacher complexity of the
Q-function approximator using the factored-action space
with that of the full combinatorial action space (formally
discussed in Appendix A.5).
Proposition 5. Using the linear Q-function decomposition
for the factored action space in Eqn. (1) has a smaller lower
bound on the empirical Rademacher complexity compared
to learning the Q-function in the combinatorial action space.
Proposition 5 shows that our linear Q-function parameter-
ization leads to a smaller function space, which implies a
lower-variance estimator. Hence, the factored-action learn-
ing algorithm can make more efficient use of limited sam-
ples, leading to an interesting bias-variance trade-off that is
especially beneficial for offline settings with limited data.

I Bias 6) Suboptimal Performance. When the linear de-
composition is biased, the inaccurate Q-function may still
be used to identify the value-maximizing action. In this
section, we identify scenarios under which this occurs.
Proposition 6. There exists an MDP with optimal Q-
function Q⇤ and its approximation Q̂ according to
Eqn. (1), such that Q̂ 6= Q⇤ and yet arg maxa Q̂(a) =
arg maxa Q⇤(a).
Justification. To focus the analysis on properties unique
to our factored Q-decomposition approach, we consider a
simple bandit setting. Consider a 1-step bandit problem
with a single state and the same action space as before,
A = Ax ⇥ Ay. Taking an action a = [ax, ay] leads the
agent to move diagonally and terminate immediately. Since
there are no transitions, the Q-values of any policy are sim-
ply the immediate reward from each action, Q(a) = r(a).
We assume the reward function is defined as in Figure 4a
(see Appendix A.6 for a procedure to standardize any re-
ward function). Applying our approach amounts to solving
for the parameters rLeft, rRight, rDown, rUp of the linear system in
Figure 4b, while dropping the interaction term rInteract, result-
ing in omitted-variable bias (Wooldridge, 2015). Solving
the system gives the approximate value function where the
interaction term � appears in the approximation Q̂ for all
arms (Figure 4c, details in Appendix A.7).

Note that Q̂ = Q⇤ only when � = 0, i.e., there is no in-
teraction between the two sub-actions. We first consider
the family of problems with ↵ = 1 and � 2 [�4, 4].
In Figure 5, we measure the value approximation error
RMSE(Q⇤, Q̂), as well as the suboptimality V ⇡⇤ � V ⇡̂ =
maxa Q⇤(a) � Q⇤(arg maxa Q̂(a)) of the greedy policy
Q̂ compared to ⇡⇤. As expected, when � = 0, Q̂ is unbiased
and has zero approximation error. When � 6= 0, Q̂ is biased;
however, when � � �1, Q̂ corresponds to a policy that
correctly identifies the optimal action.

Reduced Variance

See paper for details

e.g., when two sub-actions “reinforce” their independent effects

Demonstrate, with examples, how domain knowledge may be used to 
inform its applicability in real-world problems (e.g., healthcare, education)

Implication of linear approximation on bias, variance, and policy optimality

Outside the regime of theoretical guarantees --
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Figure 4. (a) A two-dimensional bandit problem with action space
A. Rewards are denoted for each arm. (b) The linear Q decompo-
sition corresponds to a system of linear equations that relates the
reward of each arm. The parameter rInteract is dropped in our linear
approximation, leading to omitted-variable bias. (c) Solving the
system results in an approximate value function Q̂, which does not
equal to the true value function Q⇤ unless � = 0.
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Figure 5. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of � when ↵ = 1. The Q-value approximation is unbiased only
when � = 0, but the corresponding approximate policy is optimal
for a wider range of � � �1.

We further investigate this phenomenon considering both
↵, � 2 [�4, 4] (to show all regions with interesting trends),
measuring RMSE and suboptimality as above. As shown in
Figure 6, the approximation error is zero only when � = 0,
regardeless of ↵. However, for a wide range of ↵ and �
settings, suboptimality is zero; this suggests that in those
regions, even in the presence of bias (non-zero approxima-
tion error), our approach can still lead to an approximate
value function that correctly identifies the optimal action.
Specifically, when the two sub-actions affect the reward
in the same direction (i.e., ↵ � 0) and their interaction
effects also affect the reward in the same direction (i.e.,
� � 0), it is guaranteed that the action with the highest
approximate value corresponds to the action with highest
true value. We believe this setting arises in many real-world
problems; we present an example case in our experiments
in Section 4.2.
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Figure 6. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of ↵ and �. The Q-value approximation is unbiased only when
� = 0, but the corresponding approximate policy is optimal for
a wider range of ↵ and � values. The highlighted region of zero
suboptimality corresponds to ↵ � 0 and � � 0.

4. Experiments & Results
We apply our approach to two offline RL problems from
healthcare: a simulated and a real-data problem, both hav-
ing an action space that is composed of a combination of
sub-actions. In the following experiments, we compare our
proposed approach (Figure 1b), which makes a simplifying
assumption regarding the effect of sub-actions in combina-
tion with other sub-actions, against a common baseline that
considers a combinatorial action space (Figure 1a).

4.1. Simulated Domain: Sepsis Simulator

Rationale. First, we apply our approach to a simulated
domain modeled after the physiology of patients with sepsis
(Oberst & Sontag, 2019). Although the policies are learned
“offline,” a simulated setting allows us to evaluate the learned
policies in an “online” fashion without requiring offline
policy evaluation (OPE).

Setup. Following Tang & Wiens (2021), state is represented
by a feature vector x(s) 2 {0, 1}21 that uses a one-hot en-
coding for each underlying variable (diabetes status, heart
rate, blood pressure, oxygen concentration, glucose: all of
which are discrete). The action space is composed of 3
binary treatments: antibiotics, vasopressors, and mechan-
ical ventilation, such that A = Aabx ⇥ Avaso ⇥ Amv, with
Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8. Each
treatment affects certain vital signs and may raise or lower
their values with pre-specified probabilities. A patient is dis-
charged alive when all vitals are normal and all treatments
have been withdrawn; death occurs if 3 or more vitals are
abnormal. Rewards are sparse and only assigned at the end
of each episode, with +1 for survival and �1 for death, after
which the system transitions into the respective absorbing
state. Episodes are truncated at a maximum length of 20
following prior work (Oberst & Sontag, 2019) (in which
case no terminal reward is assigned).
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Figure 4. (a) A two-dimensional bandit problem with action space
A. Rewards are denoted for each arm. (b) The linear Q decompo-
sition corresponds to a system of linear equations that relates the
reward of each arm. The parameter rInteract is dropped in our linear
approximation, leading to omitted-variable bias. (c) Solving the
system results in an approximate value function Q̂, which does not
equal to the true value function Q⇤ unless � = 0.
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Figure 5. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of � when ↵ = 1. The Q-value approximation is unbiased only
when � = 0, but the corresponding approximate policy is optimal
for a wider range of � � �1.

We further investigate this phenomenon considering both
↵, � 2 [�4, 4] (to show all regions with interesting trends),
measuring RMSE and suboptimality as above. As shown in
Figure 6, the approximation error is zero only when � = 0,
regardeless of ↵. However, for a wide range of ↵ and �
settings, suboptimality is zero; this suggests that in those
regions, even in the presence of bias (non-zero approxima-
tion error), our approach can still lead to an approximate
value function that correctly identifies the optimal action.
Specifically, when the two sub-actions affect the reward
in the same direction (i.e., ↵ � 0) and their interaction
effects also affect the reward in the same direction (i.e.,
� � 0), it is guaranteed that the action with the highest
approximate value corresponds to the action with highest
true value. We believe this setting arises in many real-world
problems; we present an example case in our experiments
in Section 4.2.
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Figure 6. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of ↵ and �. The Q-value approximation is unbiased only when
� = 0, but the corresponding approximate policy is optimal for
a wider range of ↵ and � values. The highlighted region of zero
suboptimality corresponds to ↵ � 0 and � � 0.

4. Experiments & Results
We apply our approach to two offline RL problems from
healthcare: a simulated and a real-data problem, both hav-
ing an action space that is composed of a combination of
sub-actions. In the following experiments, we compare our
proposed approach (Figure 1b), which makes a simplifying
assumption regarding the effect of sub-actions in combina-
tion with other sub-actions, against a common baseline that
considers a combinatorial action space (Figure 1a).

4.1. Simulated Domain: Sepsis Simulator

Rationale. First, we apply our approach to a simulated
domain modeled after the physiology of patients with sepsis
(Oberst & Sontag, 2019). Although the policies are learned
“offline,” a simulated setting allows us to evaluate the learned
policies in an “online” fashion without requiring offline
policy evaluation (OPE).

Setup. Following Tang & Wiens (2021), state is represented
by a feature vector x(s) 2 {0, 1}21 that uses a one-hot en-
coding for each underlying variable (diabetes status, heart
rate, blood pressure, oxygen concentration, glucose: all of
which are discrete). The action space is composed of 3
binary treatments: antibiotics, vasopressors, and mechan-
ical ventilation, such that A = Aabx ⇥ Avaso ⇥ Amv, with
Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8. Each
treatment affects certain vital signs and may raise or lower
their values with pre-specified probabilities. A patient is dis-
charged alive when all vitals are normal and all treatments
have been withdrawn; death occurs if 3 or more vitals are
abnormal. Rewards are sparse and only assigned at the end
of each episode, with +1 for survival and �1 for death, after
which the system transitions into the respective absorbing
state. Episodes are truncated at a maximum length of 20
following prior work (Oberst & Sontag, 2019) (in which
case no terminal reward is assigned).

Action Space:

Behavior policy takes the optimal action 
with probability  
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Figure 4. (a) A two-dimensional bandit problem with action space
A. Rewards are denoted for each arm. (b) The linear Q decompo-
sition corresponds to a system of linear equations that relates the
reward of each arm. The parameter rInteract is dropped in our linear
approximation, leading to omitted-variable bias. (c) Solving the
system results in an approximate value function Q̂, which does not
equal to the true value function Q⇤ unless � = 0.
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Figure 5. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of � when ↵ = 1. The Q-value approximation is unbiased only
when � = 0, but the corresponding approximate policy is optimal
for a wider range of � � �1.

We further investigate this phenomenon considering both
↵, � 2 [�4, 4] (to show all regions with interesting trends),
measuring RMSE and suboptimality as above. As shown in
Figure 6, the approximation error is zero only when � = 0,
regardeless of ↵. However, for a wide range of ↵ and �
settings, suboptimality is zero; this suggests that in those
regions, even in the presence of bias (non-zero approxima-
tion error), our approach can still lead to an approximate
value function that correctly identifies the optimal action.
Specifically, when the two sub-actions affect the reward
in the same direction (i.e., ↵ � 0) and their interaction
effects also affect the reward in the same direction (i.e.,
� � 0), it is guaranteed that the action with the highest
approximate value corresponds to the action with highest
true value. We believe this setting arises in many real-world
problems; we present an example case in our experiments
in Section 4.2.
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Figure 6. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of ↵ and �. The Q-value approximation is unbiased only when
� = 0, but the corresponding approximate policy is optimal for
a wider range of ↵ and � values. The highlighted region of zero
suboptimality corresponds to ↵ � 0 and � � 0.

4. Experiments & Results
We apply our approach to two offline RL problems from
healthcare: a simulated and a real-data problem, both hav-
ing an action space that is composed of a combination of
sub-actions. In the following experiments, we compare our
proposed approach (Figure 1b), which makes a simplifying
assumption regarding the effect of sub-actions in combina-
tion with other sub-actions, against a common baseline that
considers a combinatorial action space (Figure 1a).

4.1. Simulated Domain: Sepsis Simulator

Rationale. First, we apply our approach to a simulated
domain modeled after the physiology of patients with sepsis
(Oberst & Sontag, 2019). Although the policies are learned
“offline,” a simulated setting allows us to evaluate the learned
policies in an “online” fashion without requiring offline
policy evaluation (OPE).

Setup. Following Tang & Wiens (2021), state is represented
by a feature vector x(s) 2 {0, 1}21 that uses a one-hot en-
coding for each underlying variable (diabetes status, heart
rate, blood pressure, oxygen concentration, glucose: all of
which are discrete). The action space is composed of 3
binary treatments: antibiotics, vasopressors, and mechan-
ical ventilation, such that A = Aabx ⇥ Avaso ⇥ Amv, with
Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8. Each
treatment affects certain vital signs and may raise or lower
their values with pre-specified probabilities. A patient is dis-
charged alive when all vitals are normal and all treatments
have been withdrawn; death occurs if 3 or more vitals are
abnormal. Rewards are sparse and only assigned at the end
of each episode, with +1 for survival and �1 for death, after
which the system transitions into the respective absorbing
state. Episodes are truncated at a maximum length of 20
following prior work (Oberst & Sontag, 2019) (in which
case no terminal reward is assigned).
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Figure 4. (a) A two-dimensional bandit problem with action space
A. Rewards are denoted for each arm. (b) The linear Q decompo-
sition corresponds to a system of linear equations that relates the
reward of each arm. The parameter rInteract is dropped in our linear
approximation, leading to omitted-variable bias. (c) Solving the
system results in an approximate value function Q̂, which does not
equal to the true value function Q⇤ unless � = 0.
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Figure 5. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of � when ↵ = 1. The Q-value approximation is unbiased only
when � = 0, but the corresponding approximate policy is optimal
for a wider range of � � �1.

We further investigate this phenomenon considering both
↵, � 2 [�4, 4] (to show all regions with interesting trends),
measuring RMSE and suboptimality as above. As shown in
Figure 6, the approximation error is zero only when � = 0,
regardeless of ↵. However, for a wide range of ↵ and �
settings, suboptimality is zero; this suggests that in those
regions, even in the presence of bias (non-zero approxima-
tion error), our approach can still lead to an approximate
value function that correctly identifies the optimal action.
Specifically, when the two sub-actions affect the reward
in the same direction (i.e., ↵ � 0) and their interaction
effects also affect the reward in the same direction (i.e.,
� � 0), it is guaranteed that the action with the highest
approximate value corresponds to the action with highest
true value. We believe this setting arises in many real-world
problems; we present an example case in our experiments
in Section 4.2.
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Figure 6. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of ↵ and �. The Q-value approximation is unbiased only when
� = 0, but the corresponding approximate policy is optimal for
a wider range of ↵ and � values. The highlighted region of zero
suboptimality corresponds to ↵ � 0 and � � 0.

4. Experiments & Results
We apply our approach to two offline RL problems from
healthcare: a simulated and a real-data problem, both hav-
ing an action space that is composed of a combination of
sub-actions. In the following experiments, we compare our
proposed approach (Figure 1b), which makes a simplifying
assumption regarding the effect of sub-actions in combina-
tion with other sub-actions, against a common baseline that
considers a combinatorial action space (Figure 1a).

4.1. Simulated Domain: Sepsis Simulator

Rationale. First, we apply our approach to a simulated
domain modeled after the physiology of patients with sepsis
(Oberst & Sontag, 2019). Although the policies are learned
“offline,” a simulated setting allows us to evaluate the learned
policies in an “online” fashion without requiring offline
policy evaluation (OPE).

Setup. Following Tang & Wiens (2021), state is represented
by a feature vector x(s) 2 {0, 1}21 that uses a one-hot en-
coding for each underlying variable (diabetes status, heart
rate, blood pressure, oxygen concentration, glucose: all of
which are discrete). The action space is composed of 3
binary treatments: antibiotics, vasopressors, and mechan-
ical ventilation, such that A = Aabx ⇥ Avaso ⇥ Amv, with
Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8. Each
treatment affects certain vital signs and may raise or lower
their values with pre-specified probabilities. A patient is dis-
charged alive when all vitals are normal and all treatments
have been withdrawn; death occurs if 3 or more vitals are
abnormal. Rewards are sparse and only assigned at the end
of each episode, with +1 for survival and �1 for death, after
which the system transitions into the respective absorbing
state. Episodes are truncated at a maximum length of 20
following prior work (Oberst & Sontag, 2019) (in which
case no terminal reward is assigned).
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Experiment: Sepsis Treatment in MIMIC-III
Problem setup based on Komorowski et al., “AI Clinician”, Nature Medicine 2018. 

Action SpaceState Space

Policy Baseline BCQ Factored BCQ Clinician
Test WIS 90.44 ± 2.44 91.62 ± 2.12 90.29 ± 0.51
Test ESS 178.32 ± 11.42 178.32 ± 11.96 2894

% agreement
with clinician 62.42% 62.37% 57.16%

Figure 7: Left - Pareto frontiers of validation performance for the candidate policies (all points plotted
in Figure 16). The shaded region does not meet the ESS cutoff of � 200. The red circles indicate
the selected models (based on best validation WIS) for baseline and proposed (both have a BCQ
threshold of ⌧ = 0.5). Right - Performance on test set, ± standard errors from 100 bootstraps.
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Figure 8: (a) Qualitative comparison of policies. (b) Per-action state heterogeneity, measured as the
standard deviation of all state embeddings from which a particular action is observed in the dataset,
averaged over state embedding dimensions. Actions with higher IV fluid doses exhibited greater
heterogeneity in the observed states from which those actions were taken (by the clinician policy).

The Q-networks were trained for a maximum of 10, 000 iterations, with checkpoints saved every 100
iterations. We performed model selection [31] over the saved checkpoints (candidate policies) by
evaluating policy performance using the validation set with OPE. Specifically, we estimated policy
value using weighted importance sampling (WIS) and measured effective sample size (ESS), where
the behavior policy was estimated using k nearest neighbors in the embedding space. Following
previous work [39], the final policies were selected by maximizing validation WIS with ESS of
� 200 (we consider other thresholds in Appendix D.3), for which we report results on the test set.

Results. We visualize the validation performance over all candidate policies. Figure 7-left shows
that the performance Pareto frontier (in terms of WIS and ESS) of the proposed approach generally
dominates the baseline.

Quantitative comparisons. Evaluating the final selected policies on the test set (Figure 7-right) shows
that the proposed factored BCQ achieves a higher policy value (estimated using WIS) than baseline
BCQ at the same level of ESS. In addition, both policies have a similar level of agreement with the
clinician policy, comparable to the average agreement among clinicians.

Qualitative comparisons. In Figure 8a, we compare the distributions of recommended actions by
the clinician behavior policy, baseline BCQ and factored BCQ, as evaluated on the test set. While
overall the policies look rather similar, in that the most frequently recommended action corresponds
to low doses of IV fluids <500mL with no vasopressors, there are notable differences for key parts of
the action space. In particular, baseline BCQ almost never recommends higher doses of IV fluids
>500 mL, either alone or in combination with vasopressors, whereas both clinician and factored
BCQ recommend IV fluids >500 mL more frequently. These actions are typically used for critically
ill patients, for whom the Surviving Sepsis Campaign guidelines recommends up to >2L of fluids
[40]. We hypothesize that this difference is due to a higher level of heterogeneity in the patient states
for which actions with high IV fluid doses were observed, compared to the remaining actions with
lower doses of IV fluids. To further understand this phenomenon, we measure the per-action state
heterogeneity in the test set by computing, for each action, the standard deviation (averaged over
the embedding dimensions) of all RNN state embeddings from which that action is taken according
to the behavior policy. As shown in Figure 8b, actions with higher IV fluids generally have larger
standard deviations, supporting our hypothesis. The larger heterogeneity combined with lower sample
sizes makes it difficult for baseline BCQ to correctly infer the effects of these actions, as it does not
leverage the relationship among actions. In contrast, our approach leverages the factored action space
and can thus make better inferences about these actions.
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Better performance at same effective sample size
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Experiment: Sepsis Treatment in MIMIC-III See paper for details

For less frequently observed / underexplored treatment combinations 
Proposed approach captures their effects better
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Takeaways

select

(a)

(b)

combinatorial action space

factored action space

We develop an approach for offline RL with factored action spaces 
by learning linearly decomposable Q-functions.  

https://github.com/MLD3/OfflineRL_FactoredActions

S. Tang             M. Makar        M.W. Sjoding F.Doshi-Velez       J. Wiens

● Leverage domain knowledge when available
● Identify scenarios when approximation bias does 

not lead to suboptimal performance
● Could apply more broadly to help scale RL 

methods in other applications involving 
combinatorial action spaces
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