

This work is funded by NSF and NIH-NLM.

Leveraging Factored Action Spaces for Efficient Offline RL in Healthcare

Shengpu Tang, Maggie Makar, Michael W. Sjoding, Finale Doshi-Velez, Jenna Wiens NeurIPS 2022

Action Spaces in Clinical Problems

Commonly exhibit combinatorial structures

Acute Dyspnea (ongoing project at UM) $|A| = 2^5 = 32$

{0,1} Antibiotics

{0,1} Anticoagulants

🥖 {0,1} Fluids

- (0,1) Diuretics
- (0,1) Steroids

Mech Vent Weaning (Prasad et al., UAI 2017) $|A| = 2 \times 4 = 8$

MV setting $a[0] \in \{0,1\}$

Sedation level $a[1] \in \{0,1,2,3\}$

 $\mathcal{A} = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 0\\3 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$

AI Clinician / MIMIC-sepsis

(Komorowski et al., Nature Medicine 2018)

Factored Action Spaces

$$\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_D$$

Overall action space is a **Cartesian product** of *D* sub-action spaces

$$\boldsymbol{a} = [a_1, \dots, a_D] \in \mathcal{A}$$

 $a_d \in \mathcal{A}_d$

Each action is a **vector** of *D* sub-actions

Combinatorial action space \rightarrow Typical Q function

See paper for details on related works

Factored action space \rightarrow Linear Q decomposition

Factored action space \rightarrow Linear Q decomposition

$Q(s, \square \square) = q_1(s, \square) + q_2(s, \square) + q_3(s, \square)$

Our Contributions

We develop an approach for offline RL with **factored action spaces** by learning **linearly decomposable** Q-functions.

- Provide new *theoretical insights* on its applicability
- Conduct *empirical evaluations* in the context of <u>offline RL for healthcare</u>

Theoretical Insights

"When does it work?"

Does linear decomposition always exist? Will using linear decomposition introduce bias?

Sufficient Conditions for Zero Bias

...yet are not necessary

D "parallel" MDPs \rightarrow implicitly factorized MDP via state abstractions

Outside the regime of theoretical guarantees --

Implication of linear approximation on bias, variance, and policy optimality

Reduced Variance

Bias-Variance Trade-off

 $\left|\mathcal{S}\right|\left(\left(\sum_{d=1}^{D} |\mathcal{A}_d|\right) - D + 1\right)$

The number of free parameters of tabular MDP

$$|\mathcal{S}||\mathcal{A}| = |\mathcal{S}|(\prod_{d=1}^{D} |\mathcal{A}_d|) \rightarrow$$

Bias ⇒ Suboptimality

e.g., when two sub-actions "reinforce" their independent effects

Demonstrate, with examples, how **domain knowledge** may be used to inform its **applicability** in real-world problems (e.g., healthcare, education)

Experiment: Sepsis Simulator

Simulator based on Oberst & Sontag, ICML 2019.

Action Space:
$$\mathcal{A}=\mathcal{A}_{
m abx} imes\mathcal{A}_{
m vaso} imes\mathcal{A}_{
m mv}$$
 $|\mathcal{A}|=2^3=8$

 $\rho = 0.01$

Action Space:

0.8

0.4

0.0

-0.4

 10^{2}

 10^{3}

Sample Size

 10^{4}

Policy Value

Simulator based on Oberst & Sontag, ICML 2019.

$$|\mathcal{A}| = 2^3 = 8$$

Behavior policy takes the optimal action less than random posed approach better at inferring **underexplored** actions

 10^{2}

 $\mathcal{A} = \mathcal{A}_{abx} \times \mathcal{A}_{vaso} \times \mathcal{A}_{mv}$

Proposed

 $\rho = 0$

 10^{3}

Sample Size

 10^{4}

Baseline

Experiment: Sepsis Treatment in MIMIC-III

State Space Derived from 48 physiological signals $V = \frac{1}{2} + \frac{1}{2}$

Problem setup based on Komorowski et al., "AI Clinician", Nature Medicine 2018.

Policy	Baseline BCQ	Factored BCQ	Clinician
Test WIS	90.44 ± 2.44	91.62 ± 2.12	90.29 ± 0.51
Test ESS	178.32 ± 11.42	178.32 ± 11.96	2894

Better performance at same effective sample size

Experiment: Sepsis Treatment in MIMIC-III

See paper for details

For less frequently observed / underexplored treatment combinations Proposed approach captures their effects better

Takeaways

We develop an approach for offline RL with **factored action spaces** by learning **linearly decomposable** Q-functions.

- Leverage domain knowledge when available
- Identify scenarios when approximation bias does not lead to suboptimal performance
- Could apply more broadly to help scale RL methods in other applications involving combinatorial action spaces

S. Tang M. Makar M.W. Sjoding F. Doshi-Velez J. Wiens

This work is funded by NSF and NIH-NLM.

https://github.com/MLD3/OfflineRL_FactoredActions