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Problem

Consider the following multi-level composition optimization problem:

min  F(z) = fio--o fr(z), (1)
where
» fi:R% — R%-1 4 =1,... T are continuously differentiable
(do =1);

» [ is bounded below by F* > —oc;
> X C R%is a closed convex set

» F(z) is possibly nonconvex
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Setting

Our goal is to design online projection-free algorithms solving the above
optimization problem, given access to noisy evaluations of Vf;'s and f;'s.

» nonconvex + multi-level
» fully online manner: one sample, no min-batch
» projection-free algorithm: conditonal gradient based methods

> stochastic setting: only Stochatic Zeroth/First-order Oracle
(SZO/SFO) is accessible
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Challenges

Consider solving the two-level stochastic composition optimization

min  F(z) = fi(f2(z)), (2)

reX

given access to noisy evaluations of V f1, fa, and V fs.

» Vanilla SGD performs poorly due to the biasedness:

EVf(fa()) Vis(@)] # V(f(z)) - Viz) = VF(z)

mini-batch stochastic gradient estimators lead to oracle complexities
that depend exponentially on T

» Most existing projection-free algorithms require increasing order of
mini-batches 1; some recent one-sample variants require stronger
assumptions or are not in the fully online manner 2.

1[LZ16, RSPS16, HL16, QLX18, YSC19]
2[zSM*20, ABTR21]
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Our Method: Moving Average Estimator

Auxiliary sequences cumulatively estimate the inner function values
k k . k k
uj — fi(uiyq), i=1,...,T, (ups; =2")
and the gradient of F(x)

2 — VF(z").

E.g., T = 2: for some 71, € [0,1)

Wkt = (1 — )k 4 7 fo ()

A = (1) 2k + 7.V fo(a?) TV fr(uh)

The idea is also referred to the Averaged Stochastic Approxmiation
(ASA) and Dual Averaging.

6/18



Our Method: Conditional Gradient Sliding

The projection step at the iterate z* with the gradient estimate 2* and

stepsize 1/43,
1
T = Projy (mk ——zF),
B

can be written in the form of

argmin{<zk,fc> T §5s—zk||2},

TEX

which is a constrained quadratic minimization problem that can be solved
by iteratively running Frank-Wolfe method with the exact line search.

Solving projection subproblems via the Frank-Wolfe algorithm is known
as conditional gradient sliding.
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Frank-Wolfe method with the exact line search

Algorithm 2 Inexact Conditional Gradient Method (ICG)

Input: (z, z, 8, M, §)
Set w® = z.
fort=0,1,2,...,M do
1. Find v* € X with a quantity § > 0 such that

(24 Bt —a),0') < mip (z + o’ — ), 0) + D2

2. Set w'tt = (1 — py)w! + pyvt with gy = min {1, %%;_wﬁ}

end for
Output: wM

Remark
The exact solution to the linear minimization problem is not required.
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Our Algorithm: Linearized NASA with ICG Method

1. Update the solution:

g = 1C6(2", 2, By, i, 6),
F =2k o (8 - 2P),

and compute stochastic Jacobians JF™, and function values G¥** at
ub  fori=1,...,T.

2. Update average gradients z and function value estimates u; for each
level i =1,...,T

T
1
P = (1 - )"+ H JE s
i=1
E+1 _ k k+1 k+1 ) k+1 K
u;m = (1 —m)uf + G+ (] Uiy — Uiy )

Linearization helps to get rid of level-dependent batch size
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Notions of Stationarity

Definition

A point T € X generated by an algorithm is called an e-stationary point in
terms of GM, if we have E[||Gx (Z, VF(Z), 8)|°] < e. A point T € X generated
by an algorithm is called an e-stationary point in terms of FW-gap, if we have

Elgx(Z,VF(z))] <e.
> Gradient Mapping (GM):

G (7, VF (), 8) = B (a: ~a (:c - %VF(QE)))

» Frank-Wolfe Gap:
gx(Z,VF(Z)) := max (VF(Z),T — y).
yeX

Proposition (Translation)

> ||Gx(x, VF(z),B8)|” < gx(z, VF(z)),Va € X.
» Under regular conditions: (i) X C R® is convex and closed with diameter
Dx > 0; (ii) f1,..., fr and their derivatives are Lipschitz continuous, we

have g (¢, VF(2)) < [(1/8) T, Ly, + Dx] G (&, VF (), )|
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Main Results

Theorem
Under regular conditions:

> X C R? is convex and closed with diameter Dx > 0;
» fi,..., fr and their derivatives are Lipschitz continuous;

> JE G%’s are unbiased, mutually independent, and have bounded second
moment.

Let {:ck, 2*, {Uf}lgigT}kzo be the sequence generated by LiNASA+ICG with
N > 1,7‘0 = 1,t0 =0 and

B =8>0, m:\/%, ty = [Vk], Vk>1,
we have E [||Gx (z, VF(z), B)||*] < Or(N~V/2),

. [llfi(ufil) - u?IIQ] SOr(N"V%), 1<i<T, urpr ==

The random integer number R is uniformly distributed over {1,...,N}.
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Main Results

Table: Complexity results for stochastic conditional gradient type algorithms to
find an e-stationary solution in the nonconvex setting.

Algorithm Criterion # of levels | Batch size SFO LMO

SPIFER-SFW [YSC19] | FW-gap (GM) 1 O ) | 03 | 02
1-SFW [ZSM*20] FW-gap (GM) 1 1 0(e3) | 0(e?)
SCFW [ABTR21] FW-gap (GM) 2 1 0(e3) | 0(e)
SCGS [QLX18] GM 1 O(e™h) O™ | 0(e7?)
SGD+ICG [BG21] GM 1 O(eh O(c2 O(e2

LINASA+ICG GM T 1 Or(€2) | Op(ed)

O~ hides constants in T'.

Existing one-sample based stochastic conditional gradient algorithms are
either (i) not applicable to the case of general T' > 1, or (ii) require
strong assumptions [ZSM*20], or (iii) are not truly online [ABTR21].
The results in [BG21] are actually presented for the zeroth-order setting;
however the above stated first-order complexities follow immediately.
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High-probability Results for T' =1

» No existing work present high-probability results for nonconvex
constrainted stochastic optimization problems.

> [MDB21] identify the technical difficulities of obtaining
high-probability results of projected SGD in the non-convex setting.

Algorithm: ASA+ICG
Update the solution:

g = 1CG (2", 2*, By, 11, 0),

af = ok o (F - ).
Update the average gradient:

= (1 — ) 2R 4 it
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High-probability Results for T' =1

Definition
A point T € X generated by our algorithm is called an (¢, §)-stationary point, if
we have |G« (7, VF(Z), 8)|> < € with probability 1 — 6.

Assumption

Let AFTY = VF(z*) — J* for k > 0. For each k, given %), we have
E[AFTY 2] = 0 and || AR Y| | Py is K-sub-Gaussian.

Theorem
Let o =1,t0 =0, 7 = ﬁ,th = [\/E],Vk > 1, where N is the total number
of iterations. Let T =1 and let {z*,z"}1>0 be the sequence generated by
ASA4+ICG with B, = 8 > 0. Then, under above assumptions, we have
VN > 1,6 > 0, with probability at least 1 — 6,

. k k 2 K?log(1/5)
apin [Joxa vre. B < 0 ( 75

Therefore, the number of calls to SFO and LMO to get an (e, §)-stationary
point is upper bounded by O(e~?log?(1/6)), O(e > log®(1/8)) respectively.

k

14 /18



Conclusion

1. LiNASA+ICG is completely parameter-free for any T > 1:
» arbitrary step size 8 > 0;

» sliding parameter 7, = \/% N is the total number of iterations;

» number of CG updates ¢}, = [\/E] i.e., accurate ICG solutions are
not required for all iterations.

2. T =1, we provide the fisrt high-probability results for nonconvex
constrained stochastic optimization.
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