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Problem

Consider the following multi-level composition optimization problem:

min
x∈X

F (x) := f1 ◦ · · · ◦ fT (x), (1)

where
▶ fi : Rdi → Rdi−1 , i = 1, ..., T are continuously differentiable

(d0 = 1);
▶ F is bounded below by F ⋆ > −∞;
▶ X ⊂ Rd is a closed convex set
▶ F (x) is possibly nonconvex
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Setting

Our goal is to design online projection-free algorithms solving the above
optimization problem, given access to noisy evaluations of ∇fi’s and fi’s.

▶ nonconvex + multi-level
▶ fully online manner: one sample, no min-batch
▶ projection-free algorithm: conditonal gradient based methods
▶ stochastic setting: only Stochatic Zeroth/First-order Oracle

(SZO/SFO) is accessible
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Challenges

Consider solving the two-level stochastic composition optimization

min
x∈X

F (x) := f1(f2(x)), (2)

given access to noisy evaluations of ∇f1, f2, and ∇f2.

▶ Vanilla SGD performs poorly due to the biasedness:

E[∇̃f1(f̃2(x)) · ∇̃f2(x)] ̸= ∇f1(f2(x)) · ∇f2(x) = ∇F (x)

mini-batch stochastic gradient estimators lead to oracle complexities
that depend exponentially on T .

▶ Most existing projection-free algorithms require increasing order of
mini-batches 1; some recent one-sample variants require stronger
assumptions or are not in the fully online manner 2.

1[LZ16, RSPS16, HL16, QLX18, YSC19]
2[ZSM+20, ABTR21]
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Our Method: Moving Average Estimator

Auxiliary sequences cumulatively estimate the inner function values

uk
i −→ fi(u

k
i+1), i = 1, . . . , T, (uk

T+1 = xk)

and the gradient of F (x)

zk −→ ∇F (xk).

E.g., T = 2: for some τk ∈ [0, 1)

uk+1 = (1− τk)u
k + τkf̃2(x

k)

zk+1 = (1− τk)z
k + τk∇̃f2(x

k)⊤∇̃f1(u
k)

The idea is also referred to the Averaged Stochastic Approxmiation
(ASA) and Dual Averaging.
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Our Method: Conditional Gradient Sliding

The projection step at the iterate xk with the gradient estimate zk and
stepsize 1/β,

x̃ = ProjX

(
xk − 1

β
zk

)
,

can be written in the form of

argmin
x̃∈X

{
⟨zk, x̃⟩+ β

2
∥x̃− xk∥2

}
,

which is a constrained quadratic minimization problem that can be solved
by iteratively running Frank-Wolfe method with the exact line search.

Solving projection subproblems via the Frank-Wolfe algorithm is known
as conditional gradient sliding.
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Frank-Wolfe method with the exact line search

Remark
The exact solution to the linear minimization problem is not required.
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Our Algorithm: Linearized NASA with ICG Method

1. Update the solution:

ỹk = ICG(xk, zk, βk, tk, δ),

xk+1 = xk + τk(ỹ
k − xk),

and compute stochastic Jacobians Jk+1
i , and function values Gk+1

i at
uk
i+1 for i = 1, . . . , T .

2. Update average gradients z and function value estimates ui for each
level i = 1, . . . , T

zk+1 = (1− τk)z
k + τk

T∏
i=1

Jk+1
T+1−i,

uk+1
i = (1− τk)u

k
i + τkG

k+1
i + ⟨Jk+1

i , uk+1
i+1 − uk

i+1⟩.

Linearization helps to get rid of level-dependent batch size
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Notions of Stationarity
Definition
A point x̄ ∈ X generated by an algorithm is called an ϵ-stationary point in
terms of GM, if we have E[∥GX (x̄,∇F (x̄), β)∥2] ≤ ϵ. A point x̄ ∈ X generated
by an algorithm is called an ϵ-stationary point in terms of FW-gap, if we have
E[gX (x̄,∇F (x̄))] ≤ ϵ.

▶ Gradient Mapping (GM):

GX (x̄,∇F (x̄), β) := β

(
x̄−ΠX

(
x̄− 1

β
∇F (x̄)

))
▶ Frank-Wolfe Gap:

gX (x̄,∇F (x̄)) := max
y∈X

⟨∇F (x̄), x̄− y⟩.

Proposition (Translation)
▶ ∥GX (x,∇F (x), β)∥2 ≤ gX (x,∇F (x)), ∀x ∈ X .
▶ Under regular conditions: (i) X ⊂ Rd is convex and closed with diameter

DX > 0; (ii) f1, . . . , fT and their derivatives are Lipschitz continuous, we
have gX (x,∇F (x)) ≤

[
(1/β)

∏T
i=1 Lfi +DX

]
∥GX (x,∇F (x), β)∥.
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Main Results

Theorem
Under regular conditions:
▶ X ⊂ Rd is convex and closed with diameter DX > 0;
▶ f1, . . . , fT and their derivatives are Lipschitz continuous;
▶ Jk

i , G
k
i ’s are unbiased, mutually independent, and have bounded second

moment.

Let {xk, zk, {uk
i }1≤i≤T }k≥0 be the sequence generated by LiNASA+ICG with

N ≥ 1, τ0 = 1, t0 = 0 and

βk ≡ β > 0, τk =
1√
N

, tk = ⌈
√
k⌉, ∀k ≥ 1,

we have E
[
∥GX (x,∇F (x), β)∥2

]
≤ OT (N

−1/2),

E
[
∥fi(uR

i+1)− uR
i ∥2

]
≤ OT (N

−1/2), 1 ≤ i ≤ T, uT+1 = x

The random integer number R is uniformly distributed over {1, . . . , N}.
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Main Results

Table: Complexity results for stochastic conditional gradient type algorithms to
find an ϵ-stationary solution in the nonconvex setting.

Algorithm Criterion # of levels Batch size SFO LMO
SPIFER-SFW [YSC19] FW-gap (GM) 1 O(ϵ−1) O(ϵ−3) O(ϵ−2)
1-SFW [ZSM+20] FW-gap (GM) 1 1 O(ϵ−3) O(ϵ−3)
SCFW [ABTR21] FW-gap (GM) 2 1 O(ϵ−3) O(ϵ−3)
SCGS [QLX18] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
SGD+ICG [BG21] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)
LiNASA+ICG GM T 1 OT (ϵ

−2) OT (ϵ
−3)

OT hides constants in T .

Existing one-sample based stochastic conditional gradient algorithms are
either (i) not applicable to the case of general T > 1, or (ii) require
strong assumptions [ZSM+20], or (iii) are not truly online [ABTR21].
The results in [BG21] are actually presented for the zeroth-order setting;
however the above stated first-order complexities follow immediately.
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High-probability Results for T = 1

▶ No existing work present high-probability results for nonconvex
constrainted stochastic optimization problems.

▶ [MDB21] identify the technical difficulities of obtaining
high-probability results of projected SGD in the non-convex setting.

Algorithm: ASA+ICG
Update the solution:

ỹk = ICG(xk, zk, βk, tk, δ),

xk+1 = xk + τk(ỹ
k − xk).

Update the average gradient:

zk+1 = (1− τk)z
k + τkJ

k+1
1
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High-probability Results for T = 1

Definition
A point x̄ ∈ X generated by our algorithm is called an (ϵ, δ)-stationary point, if
we have ∥GX (x̄,∇F (x̄), β)∥2 ≤ ϵ with probability 1− δ.

Assumption
Let ∆k+1 = ∇F (xk)− Jk+1

1 for k ≥ 0. For each k, given Fk we have
E[∆k+1|Fk] = 0 and ∥∆k+1∥ | Fk is K-sub-Gaussian.

Theorem
Let τ0 = 1, t0 = 0, τk = 1√

N
, tk = ⌈

√
k⌉, ∀k ≥ 1, where N is the total number

of iterations. Let T = 1 and let {xk, zk}k≥0 be the sequence generated by
ASA+ICG with βk ≡ β > 0. Then, under above assumptions, we have
∀N ≥ 1, δ > 0, with probability at least 1− δ,

min
k=1,...,N

∥∥∥GX (xk,∇F (xk), β)
∥∥∥2

≤ O
(
K2 log(1/δ)√

N

)
Therefore, the number of calls to SFO and LMO to get an (ϵ, δ)-stationary
point is upper bounded by O(ϵ−2 log2(1/δ)),O(ϵ−3 log3(1/δ)) respectively.
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Conclusion

1. LiNASA+ICG is completely parameter-free for any T ≥ 1:
▶ arbitrary step size β > 0;
▶ sliding parameter τk = 1√

N
, N is the total number of iterations;

▶ number of CG updates tk = ⌈
√
k⌉, i.e., accurate ICG solutions are

not required for all iterations.

2. T = 1, we provide the fisrt high-probability results for nonconvex
constrained stochastic optimization.
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Thanks for Listening!
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