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1. Random RNNs exhibit phenomena
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Scrambling Phenomena & Li-Yorke Chaos (1975)

Let (X, d) be a compact metric space and let f : X — X be a continuous map.
Two points ¢,y € X are called proximal if:

lim inf d(f"(z), f*(y)) = O
Two points x,y € X are called asymptotic if:
lim sup d(f"(n), f"(y)) =0

n—00

Aset Y C X is called scrambled if Vz,y € Y, x # y, the two points are
proximal but not asymptotic.



2. RNNs vs FNNs, under small noise perturbations































1. RNNs exhibit

2. RNNs remain
even after small perturbations (contrary to FNNs)

RNNs exhibit phenomena
under standard (e.g., He) initialization
with probability o (small, but constant)

of their width



Theorem 1:

Consider f € RNN(kJ, 02) initialized with He normal initialization —

346 > 0, kg. > 1 : for sufficiently large k > kg., fx is Li-Yorke chaotic with
probability at least 9, independent of the width.



Theorem 2:

For fi. € RNN(k, 02) we get 3 regimes as we sweep the init. variance:

©(1) 1
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(A N(O 4klogk) = P(fx chaotic) < k
2 .
2 a; ~ N(O, E) = P(f chaotic) =c >0

3. a; NN(O,W(%)) = hm P(fr chaotic) =1

k— o0



Empirical Verification: Chaos under multiple initializations

We consider the above RNN family with He normal initialization: Var(w;) = fan%m
e But also, other initializations, or different architectures, activations.
e Experiments suggest that “Chaos is Robust”.
Layer 1 Layer 2 Pr[period 3]
weight w bias b | activation | weight w bias b | activation
1 He RelLU He He 1 13.77 %
He Uniform ReLLU He Uniform RelLU 7.49 %
He He RelLU He He RelLU 4.51%
N(0,2) | N(0,7);[-1,1] ReLU | N (0,%) | N (0,%);[-1,1] ReLU 4.45%
Glorot Glorot RelLU Glorot Glorot ReLLU 2.28%

Figure 3: The rightmost column has the estimates for the probability that the RNN exhibits period
3. We ran the experiment for 10000 times and checked whether the random RNN has period 3
(see Fig. 7). Each line specifies the type of initialization or activation unit used.



Why do we care about Period 3? = Li, Yorke 1975:

PERIOD THREE IMPLIES CHAOS

TIEN-YIEN L1 AND JAMES A. YORKE

1. Introduction. The way phenomena or processes evolve or change in time is often described
by differential equations or difference equations. One of the simplest mathematical situations occurs
when the phenomenon can be described by a single number as, for example, when the number of




Construction is now irrelevant. Focus on period-3 points

Depth-Width Trade-offs for ReLU Networks via Sharkovsky’s Theorem [Chatziafratis, Nagarajan, Panageas, Wang’20]
Better Depth-Width Trade-offs for Neural Networks through the lens of Dynamical Systems [Chatziafratis, Nagarajan, Panageas’20]
Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem [Sanford, Chatziafratis’22]



KEY Difference: RNNs vs FNNs
1. Random Perturbation is Done Once in RNNs
2. For FNNSs, “fresh” randomness is sampled for parameter.
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RNNSs: 140 < 247
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