Semi-supervised Active Linear Regression

Devvrit*1, Nived Rajaraman*2, Pranjal Awasthi³

¹University of Texas at Austin ²University of California, Berkeley ³Google Research & Rutgers University

(*Equal Contribution)

NeurIPS 2022

Problem: Given *n* points in *d* dimension $X \in \mathbb{R}^{n \times d}$ and corresponding labels $Y \in \mathbb{R}$, we want to find $\beta^* \in \mathbb{R}^d$ such that

$$\beta^* = \min_{\beta} \|X\beta - Y\|_2^2 \tag{1}$$

 \rightarrow Supervised learning assumes that Y is observed.

 \rightarrow Can be costly to get the labels of all points.

Two approaches for reducing the sample complexity, that have received much attention in the contemporary ML literature:

Active Learning: The dataset is unlabeled, and the algorithm can adaptively query the labels of a small subset of data points to carry out the task.

Semi-supervised Learning: The learner has access to massive amounts of unlabeled data in addition to some labeled data, and algorithms leverage both to carry out the learning task.

Semi-supervised Active Linear Regression (SSAR)

In this work, we introduce *Semi-supervised Active Linear Regression* (*SSAR*), which combines elements of both active learning and semi-supervised learning.

Problem (Agnostic SSAR)

The learner has n_{un} unlabeled points and n_{lab} points labeled a-priori in \mathbb{R}^d collected in the matrix X. Denote the true labels by $Y \in \mathbb{R}^{n_{un}+n_{lab}}$. The objective is to find $\hat{\beta} \in \mathbb{R}^d$ such that

$$\|X\hat{\beta} - Y\|_{2}^{2} \le (1 + \epsilon) \min_{\beta} \|X\beta - Y\|_{2}^{2},$$
(2)

while querying the labels of as few unlabeled points as possible.

The SSAR problem generalizes two known problems from the literature

Active ridge-regression: The active ridge regression objective is $||X_{un}\beta - Y_{un}||_2^2 + \lambda ||\beta||_2^2$. The unlabeled dataset has *d* points, $\{\sqrt{\lambda}e_i, i = 1, \cdots, d\}$ with corresponding labels 0.

Active kernel ridge regression: Similar to above, the kernel matrix can be augmented with the basis vectors, with the corresponding labels being 0.

- We introduce an instance-dependent parameter called the *reduced rank*, denoted by R_X.
 - \rightarrow For ridge regression, $\mathrm{R}_{\textit{X}}$ is the "statistical dimension" sd_{\lambda}. ?
 - ightarrow For kernel ridge regression, R_{X} is the "effective dimension" d_{λ} ?.
- When e ∈ (0, 1), we provide an algorithm with sample complexity of O(R_X/ε) for SSAR.
- Prove a matching *instance-wise* lower bound of Ω(Rx/ε) on the query complexity of any algorithm for a distributional/noisy version of the problem for the same range of ε.

Reduced Rank (R_X): A parameter that inuitively measures how informative the labeled dataset X_{lab} is compared to the overall dataset $X = \begin{bmatrix} X_{un} \\ X_{lab} \end{bmatrix}$.

$$\mathbf{R}_{X} = Tr\left(\left(X^{T}X\right)^{-1}X_{un}^{T}X_{un}\right)$$
(3)

 \rightarrow The reduced rank is always upper bounded by *d*.

High-level description: The algorithm samples a subset of $m = \frac{R_X}{\epsilon}$ points from X, and corresponding weights $\{w_1, \dots, w_m\}$, and performs weighted least square regression. Namely,

$$\hat{\beta} = \min_{\beta} \sum_{i=1}^{m} w_i \left(x_i^T \beta - y_i \right)^2 \tag{4}$$

The algorithm builds on the spectral sparsification based sampling primitive developed in ?. We design a novel spectral sparsification mechanism which samples points sequentially and guarantees that the number of labeled points sampled is upper bounded by $\frac{R_X}{\epsilon}$ with probability 1.

 \rightarrow The randomized BSS algorithm **?** gives only a probabilistic bound on the total (unlabeled + labeled) number of points sampled.

 \rightarrow This is not sufficient to bound the number of unlabeled points sampled - the number of points sampled can be correlated with the nature of the points sampled (i.e. labeled/unlabeled).

 \rightarrow Our algorithm sidesteps having to deal with these correlations.

Distributional SSAR: Labels revealed to the learner are corrupted by independent noise, as y = f(x) + Z, where the noise $Z \sim \mathcal{N}(0, \sigma_x^2)$. The objective is to minimize the generalization error,

$$\mathbb{E}\left[\frac{1}{|X|}\sum_{x\in X}\left(\langle\widehat{\beta},x\rangle-f(x)\right)^2\right]$$
(5)

 \rightarrow It is a special case of agnostic SSAR.

Theorem (Lower bound)

Suppose $\epsilon \in (0, 1)$. In distributional SSAR, for each X and learner there exists an instance where the learner must query $\Omega(\frac{R_X}{\epsilon})$ labels to guarantee,

$$\mathbb{E}\left[\|X\widehat{\beta} - f(X)\|_2^2\right] \leq (1+\epsilon) \min_{\beta \in \mathbb{R}^d} \mathbb{E}\left[\|X\beta - f(X)\|_2^2\right]$$

 \rightarrow Reduced rank characterizes the sample complexity on a per-instance basis for distributional SSAR.

 \rightarrow We show that the sample complexity of distributional SSAR is characterized on a per-instance basis by a new parameter known as the reduced rank, R_X . The sample complexity is shown to be $O(\frac{R_X}{\epsilon})$ for $\epsilon \in (0, 1)$.

 \rightarrow For ridge regression, $R_X = sd_\lambda$ (statistical dimension) and for kernel ridge regression, $R_X = d_\lambda$ (effective dimension), resulting in a sample complexity of $\frac{sd_\lambda}{\epsilon}$ for the active ridge regression, and $\frac{d_\lambda}{\epsilon}$ for the active kernel ridge regression problem.