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Linear Regression

Problem: Given n points in d dimension X ∈ Rn×d and corresponding
labels Y ∈ R, we want to find β∗ ∈ Rd such that

β∗ = min
β

∥Xβ − Y ∥22 (1)

→ Supervised learning assumes that Y is observed.

→ Can be costly to get the labels of all points.
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How to reduce the sample cost

Two approaches for reducing the sample complexity, that have received
much attention in the contemporary ML literature:

Active Learning: The dataset is unlabeled, and the algorithm can
adaptively query the labels of a small subset of data points to carry out
the task.

Semi-supervised Learning: The learner has access to massive amounts
of unlabeled data in addition to some labeled data, and algorithms
leverage both to carry out the learning task.
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Semi-supervised Active Linear Regression (SSAR)

In this work, we introduce Semi-supervised Active Linear Regression
(SSAR), which combines elements of both active learning and
semi-supervised learning.

Problem (Agnostic SSAR)

The learner has nun unlabeled points and nlab points labeled a-priori in Rd

collected in the matrix X . Denote the true labels by Y ∈ Rnun+nlab . The
objective is to find β̂ ∈ Rd such that

∥X β̂ − Y ∥22 ≤ (1 + ϵ)min
β

∥Xβ − Y ∥22, (2)

while querying the labels of as few unlabeled points as possible.
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Special cases of SSAR

The SSAR problem generalizes two known problems from the literature

Active ridge-regression: The active ridge regression objective is
∥Xunβ − Yun∥22 + λ∥β∥22. The unlabeled dataset has d points,
{
√
λei , i = 1, · · · , d} with corresponding labels 0.

Active kernel ridge regression: Similar to above, the kernel matrix can
be augmented with the basis vectors, with the corresponding labels being
0.
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Contribution

1 We introduce an instance-dependent parameter called the reduced
rank, denoted by RX .
→ For ridge regression, RX is the “statistical dimension” sdλ. ?
→ For kernel ridge regression, RX is the “effective dimension” dλ ?.

2 When ϵ ∈ (0, 1), we provide an algorithm with sample complexity of
O(RX/ϵ) for SSAR.

3 Prove a matching instance-wise lower bound of Ω(RX/ϵ) on the query
complexity of any algorithm for a distributional/noisy version of the
problem for the same range of ϵ.
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Reduced Rank

Reduced Rank (RX ): A parameter that inuitively measures how
informative the labeled dataset Xlab is compared to the overall dataset

X =

[
Xun

Xlab

]
.

RX = Tr

((
XTX

)−1
XT
unXun

)
(3)

→ The reduced rank is always upper bounded by d .
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ASURA (Active semi-SUpervised Regression Algorithm)

High-level description: The algorithm samples a subset of m = RX
ϵ points

from X , and corresponding weights {w1, · · · ,wm}, and performs weighted
least square regression. Namely,

β̂ = min
β

m∑
i=1

wi

(
xTi β − yi

)2
(4)
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ϵ-well balanced procedure

The algorithm builds on the spectral sparsification based sampling primitive
developed in ?. We design a novel spectral sparsification mechanism which
samples points sequentially and guarantees that the number of labeled
points sampled is upper bounded by RX

ϵ with probability 1.

→ The randomized BSS algorithm ? gives only a probabilistic bound on
the total (unlabeled + labeled) number of points sampled.

→ This is not sufficient to bound the number of unlabeled points sampled
- the number of points sampled can be correlated with the nature of the
points sampled (i.e. labeled/unlabeled).

→ Our algorithm sidesteps having to deal with these correlations.

9 / 12



Lower Bound

Distributional SSAR: Labels revealed to the learner are corrupted by
independent noise, as y = f (x) + Z , where the noise Z ∼ N (0, σ2

x). The
objective is to minimize the generalization error,

E
[

1

|X |
∑

x∈X

(
⟨β̂, x⟩ − f (x)

)2
]

(5)

→ It is a special case of agnostic SSAR.

10 / 12



Lower Bound (contd.)

Theorem (Lower bound)

Suppose ϵ ∈ (0, 1). In distributional SSAR, for each X and learner there
exists an instance where the learner must query Ω(RX

ϵ ) labels to guarantee,

E
[
∥X β̂ − f (X )∥22

]
≤ (1 + ϵ) min

β∈Rd
E
[
∥Xβ − f (X )∥22

]
.

→ Reduced rank characterizes the sample complexity on a per-instance
basis for distributional SSAR.
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Conclusion

→ We show that the sample complexity of distributional SSAR is
characterized on a per-instance basis by a new parameter known as the
reduced rank, RX . The sample complexity is shown to be O(RX

ϵ ) for
ϵ ∈ (0, 1).

→ For ridge regression, RX = sdλ (statistical dimension) and for kernel
ridge regression, RX = dλ (effective dimension), resulting in a sample
complexity of sdλ

ϵ for the active ridge regression, and dλ
ϵ for the active

kernel ridge regression problem.
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