Interpreting Operation Selection in Differentiable Architecture Search: A Perspective from Influence-Directed Explanations

Aalborg University, Denmark.

RIKEN AIP, Japan.

East China Normal University, China

Miao Zhang, Wei Huang, Bin Yang

PosterID:

IFORMATION OCESSING

AALBORG UNIVERSITET

Advanced Intelligence Project

Introduction Ι.

1. Background:

DARTS leverages continuous relaxation to convert intractable operation selection problem into a magnitude optimization problem with a bi-level formulation:

(1)

- min $\mathcal{L}_{val}(w^*(\alpha), \alpha)$
- s.t. $w^*(\alpha) = \operatorname{argmin}_w \mathcal{L}_{train}(w, \alpha)$
- The discretization of DARTS: DARTS considers heuristic methods to derive the final architecture, usually to select the operations with the highest magnitudes, $\hat{\alpha} = argmax(\alpha)$.

Fig.1 Pictorial depiction of discretization in DARTS

- Influence functions: is a classic technique from robust statistics that reveals how model parameters change as we upweight or perturb a specific training sample, which has been applied in explaining many modern machine learning applications.
- **2.** Contributions:
- **Reformulate** the operation selection in DARTS by approximating its influence on the supernet with Taylor expansions, interpreting how the validation performance changes when selecting different operations without any additional fine-tuning.
- Theoretically reveal the operation strength is not only related to the magnitude but also the second-order information, and accordingly derive a fundamentally new criterion to measure the operation sensitivity, called Influential Magnitude.

Interpret Operation Selection with Influence Functions II.

Rather than deleting a single data point that only brings small changes on the model parameters, we leverage the second-order approximation to reveal the supernet weights

III. Practical Implementation

For a large neural network, it is impractical to calculate the second-order information, e.g., the Hessian matrix *H*, let alone the inverse of Hessian. Generally, the core challenge in calculation of Eq.(5) and Eq.(7) is the Inverse-Hessian Vector Products (IHVPs). In this paper, we consider the Neumann series and Sherman-Morrison formula to approximate the IHVPs, as shown in Lemma1 and Lemma 2.

Lemma 1 With small enough γ , and assuming \mathcal{L} is λ -strongly convex at optimum, $H^{-1}v$ can be formulated as: $H^{-1}v = \gamma \sum_{k=0}^{K} [I - \gamma H]^k V_0 = V_0 + V_1 + \dots + V_K$, where $H = \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \theta \partial \theta}$, $V_0 = \gamma v$, and $V_1 = \gamma (I - \gamma H) V_0, \dots, V_K = \gamma (I - \gamma H) V_{K-1}$.

Lemma 2 When assume the empirical Fisher can approximate the Fisher matrix, and H is the Hessian matrix $\frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \theta \partial \theta}$ in the optimal point, the IHVPs $H^{-1}v$ can be formulated as: $H^{-1}v = F_n^{-1}v = F_n^{-1}v$ $F_{n-1}^{-1}v - r_n \frac{r_n^T v}{N + \nabla_{\theta} \mathcal{L}_n^T r_n} = \eta^{-1}v - \sum_{j=1}^n r_j \frac{r_j^T v}{N + \nabla_{\theta} \mathcal{L}_j^T r_j}, \text{ where } \mathcal{L} = \ell + \eta \mathcal{R}(\theta) \text{ that } \ell \text{ is a cross-entropy loss and } \mathcal{R} \text{ is the regularization term, } F_n = \frac{1}{n} \sum_{j=1}^n \nabla_{\theta} \mathcal{L}_j \nabla_{\theta} \mathcal{L}_j^T \text{ is the empirical Fisher, and}$ $\mathbf{r}_j = F_{j-1}^{-1} \nabla_{\theta} \mathcal{L}_j$ which can be recurrently calculated through $\mathbf{r}_j = \eta^{-1} \nabla_{\theta} \mathcal{L}_j - \sum_{i=1}^{j-1} \mathbf{r}_i \frac{\mathbf{r}_i^T \nabla_{\theta} \mathcal{L}_j}{N + \nabla_{\theta} \mathcal{L}_i^T}$

IV. Results

We conducted experiments on NAS-Bench-201, NAS-Bnech-1shot1, and DARTS space.

Table 2: Best test error (%) on NAS-Bench-1shot1.										
	Method	Space 1	Space2	Space3						
	DARTS DARTS-PT DARTS-IM	6.17±0.09 6.25±0.05 6.10±0.24	6.30±0.00 6.28±0.06 6.53±0.05	6.80±0.00 6.69±0.21 6.20±0.00						
	PC-DARTS PC-DARTS-PT PC-DARTS-IM	6.37±0.05 6.14±0.08 5.90±0.24	6.30±0.00 6.37±0.12 6.20±0.22	6.50±0.00 6.38±0.09 6.10±0.08	*					

Table 3: Search results on DARTS space.									
Method	CIFAR-10 T	est Error (%)	ImageNet						
	Single	Multi*	Best						
DARTS	2.76 ± 0.09	3.02 ± 0.45	26.9 / 8.7						
PC-DARTS	2.57 ± 0.07	2.92 ± 0.26	25.1 / 7.8						
DARTS-PT	$2.61{\pm}0.08$	2.89±0.31	26.1 / 8.2						
DARTS-IM	$2.50{\pm}0.10$	2.70±0.18	25.0 / 7.6						

We run the architecture search with multiple times, and average the different derived architecture's test error.

T-1-1- 4. Comme 1/ 1/1 NTA C 1 1' NAC D 1 001

change in DARTS. With second-order Taylor expansion on $\hat{\theta}^*$ for $\mathcal{L}(\hat{\theta}^*, \hat{\alpha})$, we have: $\Delta \mathcal{L} = \mathcal{L}(\hat{\theta}^*, \hat{\alpha}) - \mathcal{L}(\theta^*, \alpha) \approx \mathcal{L}(\theta^*, \hat{\alpha}) + \Delta \theta^T \frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta} + 1/2\Delta \theta^T \frac{\partial^2 \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta \partial \theta} \Delta \theta - \mathcal{L}(\theta^*, \alpha), \quad (2)$ and based on the implicit function theorem, we have the following theorem.

Theorem 1 Suppose that DARTS obtains the optimized architecture parameter α with supernet weights θ^* after supernet training, α changes to $\hat{\alpha}$ when conducting architecture discretization, and the train-from-scratch validation loss for $\hat{\alpha}$ is $\mathcal{L}(\hat{\theta}^*, \hat{\alpha})$. If the third and higher derivatives of the loss function \mathcal{L} at optimum is zero or sufficiently small [4], and with $\frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta} = 0$, we have

$$\Delta \mathcal{L} = \mathcal{L}(\hat{\theta}^*, \hat{\alpha}) - \mathcal{L}(\theta^*, \alpha) \approx \mathcal{L}(\theta^*, \hat{\alpha}) - \mathcal{L}(\theta^*, \alpha) - 1/2 \frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta}^T \frac{\partial^2 \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta \partial \theta}^{-1} \frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta}.$$
 (5)

With Theorem 1, we first devised a **DARTS-IF** framework for operation selection.

Algorithm 1 N Differentiable Architecture Search with Influence Functions (DARTS-IF)

- 1: Input: A pretrained supernet after bi-level training process (θ^* , α), candidate operations for each edge \mathcal{O} , and set of edges \mathcal{E} from the supernet.
- 2: **output:** A discrete architecture α^* .
- 3: for $e \in \mathcal{E}$ do
- for $o \in \mathcal{O}$ do 4:
- Remove candidate operation *o* from edge *e*; 5:
- Calculate the predictive loss chance $\Delta \mathcal{L}_{o,e}$ based on Eq. (5), that $\Delta \mathcal{L}_{o,e} \approx \mathcal{L}(\theta^*, \hat{\alpha})$ 6: $\mathcal{L}(\theta^*, \alpha) - 1/2 \frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta}^T \frac{\partial^2 \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta \partial \theta}^{-1} \frac{\partial \mathcal{L}(\theta^*, \hat{\alpha})}{\partial \theta}$, as the operation strength;
- Restore o to \mathcal{O} : 7:
- end for 8:
- 9: **end for**

10: Apply argmax on the operation strength $\Delta \mathcal{L}$ and derive the discrete architecture α^* accordingly.

The following **Corollary1** shows a large change on α brings more error in estimation.

Corollary 1 Based on the Assumption 1-3, we could bound the error between the approximated validation loss $\mathcal{L}(\hat{\theta}^*, \hat{\alpha}) = \Delta \mathcal{L} + \mathcal{L}(\theta^*, \alpha)$ and the ground-truth $\tilde{\mathcal{L}}(\hat{\theta}^*, \hat{\alpha})$ in DARTS with E = $\left\| \mathcal{L}(\hat{\theta}^*, \hat{\alpha}) - \tilde{\mathcal{L}}(\hat{\theta}^*, \hat{\alpha}) \right\| \leq \frac{K^3}{6} \max \left| \frac{\partial \mathcal{L}^3}{\partial \theta^3} \right|, \text{ where } K = \frac{C_L}{\lambda} \left\| \Delta \alpha \right\| + \frac{C_H C_a^2}{2\sigma_{\min}^2 \lambda} \left\| \Delta \alpha \right\|^2 + o(\left\| \Delta \alpha \right\|^2).$

In this way, we only consider an infinitesimal change on α as **Theorem 2**.

Theorem 2 Suppose that DARTS obtains the optimized architecture parameter α with supernet weights θ^* after supernet training, and we pose an infinitesimal change on α . Based on implicit function theorem and under the assumption that the third and higher derivatives of the loss function at optimum is zero or sufficiently small [4], the change of validation loss can be estimated as:

$$\Delta \mathcal{L} = \mathcal{L}(\hat{\theta}^*, \hat{\alpha}) - \mathcal{L}(\theta^*, \alpha) \approx -1/2\Delta \alpha^T \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \alpha \partial \theta} H^{-1} \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \theta \partial \alpha} * \Delta \alpha, \qquad (7)$$

where $H = \frac{\partial^2 \mathcal{L}(\theta^+, \alpha)}{\partial \theta \partial \theta}$ is the Hessian matrix.

With **Theorem 2**, we observe the relationship between $\Delta \mathcal{L}$ and $\Delta \alpha$, and proposed an *Influential Magnitude* to measure operation sensitivity for the operation selection in DARTS.

Definition 1 Influential Magnitude $(\mathcal{I}_{\mathcal{M}})$: Suppose DARTS obtains the optimized magnitude α

Table 4: Comparison results with NAS basennes on NAS-Bench-201.										
Method	CIFAR-10		CIFAR-100		ImageNet-16-120					
Wethod	Valid(%)	Test(%)	Valid(%)	Test(%)	Valid(%)	Test(%)				
Random baseline	83.20±13.28	86.61±13.46	60.70 ± 12.55	$60.83 {\pm} 12.58$	33.34±9.39	33.13±9.66				
RandomNAS [26]	80.42 ± 3.58	84.07 ± 3.61	52.12 ± 5.55	52.31 ± 5.77	27.22 ± 3.24	26.28 ± 3.09				
ENAS [33]	37.51 ± 3.19	$53.89 {\pm} 0.58$	13.37 ± 2.35	13.96 ± 2.33	15.06 ± 1.95	$14.84{\pm}2.10$				
GDAS 10	$89.88 {\pm} 0.33$	$93.40 {\pm} 0.49$	$70.95 {\pm} 0.78$	$70.33 {\pm} 0.87$	$41.28 {\pm} 0.46$	41.47 ± 0.21				
SETN [11]	84.04 ± 0.28	$87.64 {\pm} 0.00$	$58.86 {\pm} 0.06$	59.05 ± 0.24	33.06 ± 0.02	32.52 ± 0.21				
SNAS [42]	90.10 ± 1.04	92.77 ± 0.84	69.69 ± 2.39	69.35 ± 1.98	$42.84{\pm}1.79$	43.16 ± 2.64				
PC-DARTS [43]	89.96 ± 0.15	93.41 ± 0.30	67.12 ± 0.39	$67.48 {\pm} 0.89$	$40.83 {\pm} 0.08$	41.31 ± 0.22				
DARTS (1st) [27]	$39.77 {\pm} 0.00$	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00				
DARTS (2nd) [27]	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00				
DARTS-PT [40]	87.34 ± 0.43	$89.63 {\pm} 0.19$	$62.48 {\pm} 2.89$	62.35 ± 2.14	36.35 ± 2.76	36.51 ± 2.13				
DARTS-IF	90.13±0.54	$91.84{\pm}0.84$	65.47±1.33	67.94±1.23	42.78±3.57	42.50±3.30				
DARTS-IM	90.92±0.34	93.61±0.23	$71.21{\pm}0.55$	$71.31{\pm}0.40$	44.70±0.74	44.98±0.36				
optimal	91.61	94.37	74.49	73.51	46.77	47.31				

Then we analyze the batch size N, hyperparameter γ and track performance of the derived architecture during the search.

Figure 5: Ablation study on N under two approximation methods, where x-axis is N and y-axis represents test accuracy on CIFAR-10, CIFAR-100, and ImageNet, respectively.

Figure 6: Hyperparameter γ analysis of DART-IM-NS on the NAS-Bench-201 benchmark dataset.

with supernet weights θ^* after supernet training, the operation sensitivity can be defined as $\mathcal{I}_{\mathcal{M}} =$ $-\boldsymbol{I}^T \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \alpha \partial \theta} H^{-1} \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \theta \partial \alpha}.$

With **Definition 1**, we first devised a **DARTS-IF** for operation selection in DARTS.

Algorithm 2 Differentiable Architecture Search with Influence Magnitude (DARTS-IM)

1: Input: A pretrained supernet after bi-level training process (θ^* , α), candidate operations for each edge \mathcal{O} , and set of edges \mathcal{E} from the supernet.

2: **output:** A discrete architecture α^* .

3: Calculate the influence magnitude $\mathcal{I}_{\mathcal{M}} = -\mathbf{1}^T \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \alpha \partial \theta} H^{-1} \frac{\partial^2 \mathcal{L}(\theta^*, \alpha)}{\partial \theta \partial \alpha}$ based on Definition 1; 4: Apply *argmax* on the influence magnitude $\mathcal{I}_{\mathcal{M}}$ and derive the discrete architecture α^* accordingly.

Figure 7: Track performance of the derived architectures during the search on NAS-Bench-201 with Sherman-Morrison formula under different N for CIFAR-10, CIFAR-100, and ImageNet, respectively.