Interpreting Operation Selection in Differentiable Architecture Search:
A Perspective from Influence-Directed Explanations
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I. Introduction III. Practical Implementation

For a large neural network, it 1s impractical to calculate the second-order information,
e.g., the Hessian matrix H, let alone the inverse of Hessian. Generally, the core
challenge in calculation of Eq.(5) and Eq.(7) 1s the Inverse-Hessian Vector Products
(IHVPs). In this paper, we consider the Neumann series and Sherman-Morrison
formula to approximate the IHVPs, as shown in Lemmal and Lemma 2.

1. Background:
leverages continuous relaxation to convert intractable operation selection
problem into a magnitude optimization problem with a bi-level formulation:
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IV. Results

We conducted experiments on NAS-Bench-201, NAS-Bnech-1shotl, and DARTS space.
Table 2: Best test error (%) on NAS-Bench-1shotl. Table 3: Search results on DARTS space.

Lemma 2 When assume the empirical Fisher can approximate the Fisher matrix, and H is the Hes-
Fig.1 Pictorial depiction of discretization in DARTS. _ %{9}9: in the optimal p(m?r the IHVP; H~1v can be formulated as: H v = F 11
is a classic technique from robust statistics that reveals how Flio—r, NI LT =N U= T W’ where L = ( + nR(0) that { is a cross-
model parameters change as we upweight or perturb a specific training sample, entropy loss and R is the regularization term, F, = £ 5" VgLV LT
which has been applied in explaining many modern machine learning applications. VoL,
2. Contributions:
* Reformulate the operation selection in DARTS by approximating its influence on
the supernet with Taylor expansions, interpreting how the validation performance
changes when selecting different operations without any additional fine-tuning.
Theoretically reveal the operation strength is not only related to the magnitude

but also the second-order information, and accordingly derive a fundamentally Method Spacel ~ Space2  Space3 Method CI;AHEQOTW %ﬁil(%) Im%ge‘z?et
new criterion to measure the operation sensitivity, called Influential Magnitude. DARTS 6.1740.09 6.3040.00 6.8020.00 —
> . _ DARTS 276+0.09 3.02+045 26.9/8.7
Bﬁgg'ﬁgl g-il’ig-gi g-ggig-gg g-ggig-ﬁ‘; PC-DARTS ~2.57+0.07 2.9240.26 25.1/7.38
II. Interpret Operation Selection with Influence Functions S DARTS-PT  2.61+0.08 289031  26.1/8.2
PC-DARTS 6.374+0.05 6.304+0.00 6.5040.00 DARTS-IM  2.50+0.10  2.70+0.18  25.0/7.6
. . . . PC-DARTS-PT 6.14+0.08 6.37+0.12 6.38+£0.09 We run the architecture search with multiple times, and
Rather than deleting a single data point that only brings small changes on the model PC-DARTS-IM 5.90+0.24 6.20+0.22 6.10+0.08 p ’

average the different derived architecture’s test error.

parameters, we leverage the second-order approximation to reveal the supernet weights

change in DARTS. With second-order Taylor expansion on §*for £(#*, &), we have: Table 4: Comparison results with NAS baselines on NAS-Bench-201.

. ) OL(O*. & 92L(0% & CIFAR-10 CIFAR-100 ImageNet-16-120
AL = L(0". &) = L7, o) = L(07. &) + A6T —(a 7 Ly 1/2007 —8‘({) 59 Lab—ciom.0). @) Method Valid(%) — Test(%)  Valid(%) — Test(%)  Valid(%)  Test(%)
and based on the implicit function theorem, we have the following theorem. Random baseline  83.20£13.28 86.61£13.46 60.704+12.55 60.83412.58 33.344:9.39 33.1349.66
‘ ‘ _ o _ _ RandomNAS [26] 80.4243.58 84.07%3.61 52.124+5.55 52.3145.77 27.2243.24 26.284+3.09
Theorem 1 Suppose that DARTS obtains the optimized architecture parameter o with supernet ENAS [33] 37.514+3.19 53.804+0.58 13.374+2.35 13.964+2.33 15.064+1.95 14.844+2.10
weights % after supernet training, o changes to & when conducting architecture discretization, and GDAS [10] 80.884+0.33 93.40+0.49 70.954+0.78 70.33+0.87 41.284+0.46 41.474+0.21
the train-from-scratch validation loss for & is E(Q* &). If the third and higher derivatives of the loss SETN [11] 84.0440.28 87.64+0.00 58.86+0.06 59.054+0.24 33.06+0.02 32.524-0.21
netic | i is 2ero or sufficiently ] dﬂ(‘(-}' 9 0 we have SNAS [42] 90.10=1.04 92.77+£0.84 69.69£2.39 69.35+1.98 42.84+1.79 43.16x2.64
function L at optimum is zero or sufficiently small [4], and with 50 0, we have PC-DARTS [43] 20.06L0.15 93414030 67124039 6748L0.80 40.831008 41314022
| o . L . » g—)g(@*f(3.)'1"()25(9*_(7}:)455(()*_@) 5 DARTS (1Ist) [27] 39.77£0.00 54.3040.00 15.0340.00 15.61£0.00 16.434-0.00 16.32+0.00
AL =L(07, &) — L(07,a) = L(07, &) — L(07, @) — 1/2— 9000 9 ) DARTS (2nd) [27] 39.77+0.00 54.3040.00 15.03£0.00 15.61£0.00 16.4340.00 16.32:0.00
) ] ) | ) ) DARTS-PT [40]  87.34+0.43 89.6340.19 62.4842.89 62.35£2.14 36.354+2.76 36.51£2.13
With Theorem 1, we first devised a DARTS-IF framework for operation selection.
DARTS-IF 90.13+0.54 91.84+0.84 65.474+1.33 67.94+1.23 42.7843.57 42.50+3.30
Algorithm 1 NN Differentiable Architecture Search with Influence Functions (DARTS-IF) DARTS-IM 90.924+0.34 93.61+0.23 71.21+£0.55 71.31+0.40 44.70+0.74 44.98+0.36
1: Imput: A pretrained supernet after bi-level training process (8*, ), candidate operations for each optimal 91.61 04.37 74.49 73.51 46.77 47.31

edge O, and set of edges £ from the supernet.
. output: A discrete architecture a*.
3: fore € £do
. foroe Odo
Remove candidate operation o from edge e;
Calculate the predictive loss chance AL, . based on Eq. , that Aﬁo,e ~ L(0%,
£ a) p2L(6%,a4) "L aL(e*,a)

8650 o0
Restore o to O;
end for
: end for
. Apply argmax on the operation strength AL and derive the discrete architecture a* accordingly.
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The following Corollaryl shows a large change on a brings more error in estimation.

Corollary 1 Based on the Assumption we could bound the error between the approximated
validation loss L(0*,&) = AL + L(6*, (6’* &) in DARTS with I} =
‘L(é*,@) _,a)|| < ‘ I‘—max)‘?‘:g where K = L || Aal| + 225 | Aal? + o(]| Aall?).

«) and the ground-truth
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In this way, we only consider an infinitesimal change on « as Theorem 2.

Theorem 2 Suppose that DARTS obtains the optimized architecture parameter o« with supernet
weights 0% after supernet training, and we pose an infinitesimal change on «. Based on implicit
function theorem and under the assumption that the third and higher derivatives of the loss function
at optimum is zero or sufficiently small [4], the change of validation loss can be estimated as:

1 OPL6%, a 02 L(0*,
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AL = L(0*,6) — L(6",a) ~ —1/2Aa ) g1

= L(0
where H = % is the Hessian matrix.

With Theorem 2, we observe the relationship between A£ and A, and
proposed an Influential Magnitude to measure operation sensitivity for the
operation selection in DARTS.

Definition 1 Influential Magnitude (Lq): Suppose DARTS obtains the optimized magnitude o

with supernet weights 8* after supernet training, the operation sensitivity can be defined as Tyq =
T 02 L(0% &) 102L(0%,a)
—1 dadb H~ L)HOCL

With Definition 1, we first devised a DARTS-IF for operation selection in DARTS.

Algorithm 2 Differentiable Architecture Search with Influence Magnitude (DARTS-IM)

: Imput: A pretrained supernet after bi-level training process (6*, «), candidate operations for each
edge O, and set of edges £ from the supernet.

: output: A discrete architecture o*.
3: Calculate the influence magnitude Zxq = 1T%H 1%@(;‘) based on Deﬁmtlo

. Apply argmax on the influence magnitude Z 4 and derive the discrete architecture a* accordingly.

Then we analyze the batch size NV, hyperparameter 7Y and track performance of the
derived architecture during the search.
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(g) Neumann series. (h) Shelman Morrison formula. (1) Identity

Figure 5: Ablation study on N under two approximation methods, where x-axis 1s N and y-axis
represents test accuracy on CIFAR-10, CIFAR-100, and ImageNet, respectively.
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Figure 6: Hyperparameter ~y
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Figure 7: Track performance of the derived architectures during the search on NAS-Bench-201
with Sherman-Morrison formula under different N for CIFAR-10, CIFAR-100, and ImageNet,
respectively.
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