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Summarization Task

Source text Summary



Summarization Task

o Applications: headline generation

e (Granularities:
o0 Single-document summarization
o Multi-document summarization

O Sentence-level summarization -
Generate summaries for an input sentence

Example: The amphibia, which is the animal class to which our
frogs and toads belong, were the first animal to crawl from the sea
and inhabit the earth -> The first animals to leave the sea and live

on land were the amphibia.



Background

e | ength control for text summarization
o Has real-world applications

o ROUGE scores being sensitive to the summary
length (Itsumi et al., 2020)



Background

e | ength control for text summarization
o Has real-world applications

o ROUGE scores being sensitive to the summary
length (Itsumi et al., 2020)

* Previous length-control methods

o Only controlling number of words in summaries

o Cannot explicitly control summary length



Our Approach

e QOverview

1) Non-autoregressive model
2) Character-level length-control algorithm

(a) Model architecture (b) Decoding algorithm Generation slots
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Our Approach

Non-autoregressive model

o Encoder-only architecture

o Utilizing source—target correspondence
= suitable for summarization
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Our Approach

* Non-autoregressive model

o Encoder-only architecture
o Utilizing source—target correspondence
= suitable for summarization
o (Generating at different output slots in parallel
o High inference efficiency

o Local predicted probabilities
= dynamic programming for length control

O |ndependent probability



CTC Loss

e Non-autoregressive mode generates the output of the
same length as the input, which can not be summary

o0 Padding the target with empty €

© Example: | € like reading € € € € books
= | like reading books

¢ CTC (ravessta. 2009 Training objective: MLE ) _ P(w|x)

- Computed by dynamic programming

w:'(w)=y



Our Approach

e Character-level length control
o0 Based on dynamic programming

o Formulating length control as a Knapsack problem
= Number of characters in a word as the weight v(-)
= Predicted log-probability of a word as the value u(-)

maximize Z Vs(Ws), subject to Z u(y) <

Wl’a-- ,WS

s=1 YEY
y:I‘ W1, W QS

word sequence budget




Dynamic programming
* Divide the lengths into buckets for efficient inference

o |th bucket cover the length ranging froma - (I — 1) +
1 to a - | characters



Dynamic programming

* Divide the lengths into buckets for efficient inference.

o |th bucket cover the length ranging froma - (| — 1) +
1 to a - | characters

eRecursion Variables:

O s,l :
d™" 35 the most probable s-token sequence that is
reduced to a summary in the lth length bucket



Dynamic programming

® Base Case:

o d°Y =€ € (s-many)

(b) Decoding algorithm Generation slots
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(b) Decoding algorithm

Length buckets [

Dynamic programming

® Base Case:
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Dynamic programming

® Base Case:

@
€, if l=0
dl,l _ .
argmax vi(w), if [ >0
® wiu(w)€la-(I—1)+1,a-]
(b) Decoding algorithm Generation slots
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Dynamic programming
® Recursive steps
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Dynamic programming

® Recursive steps

_@.29,1 _ {ds—l,l o dgj’l}



Dynamic programming

® Recursive steps
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Dynamic programming
® Recursive steps

@f,l — {ds—l,l D 6}

®
S, s—1, s—1,1
. gzl:{d 1l€DdS_:]l_
g {ds—l,l,@ws ; (u(ws)+ 3 u(d)) cla-(1—1)+1,a-1,

Ws # €, Wg # dgj’l,, and [’ < l}

e Update recursion variables
S

ds! = argmax E vg(ds)
s,l s,l s,l



Experiments

e (Gigaword
Setting # Approach Len R E_(%UGERII AR Time
| Su et al. [34] (truncate) 38.43 | 32.28 14.21 30.56 0 0.016
2 Qi et al. [29] (truncate) 2798 | 31.69 12.52 30.05 -2.79 | 0.019
Supervised 3 NAR anoetal (41 ncate R 8 (.4 N0 14 _
4 NACC (truncate) 0.011
5 NACC (length control)
6 | Baseline Lead-50 chars 49.03 | 20.66 7.08 19.30 -9.23 -
7 Search Schumann et al. [33] (truncate) | 45.45 | 24.98 9.08 23.18 0.97 9.573
8 Char constrained search 44.05 | 25.30 9.25 2343 1.71 | 17.324
Unsupervised 9 Su et al. [34] (truncate) 45.24 | 24.65 864 22.98 0 ().(:)17
‘ ‘ 10 Qi et al. [29] (truncate) 44.54 | 24.31 7.66 2248 -1.82 0.019
11 NAR Yang et al. [41] (truncate) 49.37 | 21.70 4.60 20.13 -9.84 >
12 N A 18R] (truncate / R R R/ ()
12 NACC (truncate) 23.75 2,21
13 NACC (length control)

Table 1: Performance on the Gigaword headline generation test set, where NAR stands for non-

autoregressive. Len: Average number of characters in the predicted summaries. R-1, R-2, R-L:
ROUGE-1, ROUGE-2, ROUGE-L. AR: The difference of total ROUGE (sum of R-1, R-2, and R-L)

in comparison with the (previous) state-of-the-art NAR summarization system [34

]. Time: Average

inference time in seconds for one sample on an 19-9940X CPU and an RTX6000 GPU.



Experiments

e DUC2004

ROUGE Recall .
# Approach R R R AR Time
1 | Baseline [LLead-75 chars 2252 650 19.74 -4.97 —
2 Search Schumann et al. [33] (truncate) | 26.09 8.03 22.86 3.25 | 30.362
3 Char-constrained search 26.30 795 22.78 3.30 | 31.540
4 Su et al. [34] (truncate) 24.67 7.25 21.81 0 0.017
5 O1 et al. [29] (truncate 22779 591 2005 -498 0.018
6 NAR —
7

Table 2: Results on DUC 2004 dataset.



Experiments

e Human evaluation

Decoding Wins Ties Loses | p-value
Truncate 18% 44%  38%

Overall quality Length control | 38% 44%  18% 0-0001
____Truncate T o 42%
Completeness : 0.0002

& fluency Length control | 42% 36%  22%

Table 3: Human evaluation comparing truncating and length-control decoding of our NACC approach
on 150 samples selected from the Gigaword headline generation dataset in the unsupervised setting.
The p-value 1s given by a two-sided binomial test.



Experiments

e | ength-transfer generation

o (Generating summaries of different numbers of characters
than the training target

Su et el. [30]
NACC

= N N N
oo o N R
I

Average ROUGE Score
=
(@)

.

30 40 50 60 70 80 90
Length Budget (chars)

Figure 3: Length-transfer performance of
NACC and Su et al. [34].



Thank you!
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