A Character-Level Length-Control Algorithm for Non-Autoregressive Sentence Summarization

puyuan@ualberta.ca, xzhang23@ualberta.ca doublepower.mou@gmail.com

Dept. Computing Science, University of Alberta Alberta Machine Intelligence Institute (Amii)

NeurIPS-2022

Summarization Task

Source text Summary

Summarization Task

- Applications: headline generation
- Granularities:
 - Single-document summarization
 - Multi-document summarization
 - Sentence-level summarization
 Generate summaries for an input sentence

Example: The amphibia, which is the animal class to which our frogs and toads belong, were the first animal to crawl from the sea and inhabit the earth -> The first animals to leave the sea and live on land were the amphibia.

Background

- Length control for text summarization
 - Has real-world applications
 - ROUGE scores being sensitive to the summary length (Itsumi et al., 2020)

Background

- Length control for text summarization
 - Has real-world applications
 - ROUGE scores being sensitive to the summary length (Itsumi et al., 2020)
- Previous length-control methods
 - Only controlling number of words in summaries
 - Cannot explicitly control summary length

- Overview
 - 1) Non-autoregressive model
 - 2) Character-level length-control algorithm

Non-autoregressive model

Character-level length-control algorithm

- Non-autoregressive model
 - Encoder-only architecture
 - Outilizing source—target correspondence
 ⇒ suitable for summarization

(a) Model architecture

- Non-autoregressive model
 - Encoder-only architecture
 - Outilizing source—target correspondence
 ⇒ suitable for summarization
 - Generating at different output slots in parallel
 High inference efficiency
 - Local predicted probabilities
 ⇒ dynamic programming for length control
 - Independent probability

CTC Loss

- Non-autoregressive mode generates the output of the same length as the input, which can not be summary
 - $\circ\,$ Padding the target with empty $\epsilon\,$

- **Example:** I ϵ like reading $\epsilon \epsilon \epsilon \epsilon$ books \Rightarrow I like reading books
- CTC (Graves et al. 2006) Training objective: MLE $\sum_{\mathbf{w}:\Gamma(\mathbf{w})=\mathbf{y}} P(\mathbf{w}|\mathbf{x})$
 - Computed by dynamic programming

- Character-level length control
 - Based on dynamic programming
 - Formulating length control as a Knapsack problem
 - \Rightarrow Number of characters in a word as the weight $v(\cdot)$
 - ⇒ Predicted log-probability of a word as the value $u(\cdot)$

- Divide the lengths into buckets for efficient inference
 - Ith bucket cover the length ranging from $\alpha \cdot (I 1) + 1$ to $\alpha \cdot I$ characters

- Divide the lengths into buckets for efficient inference.
 - Ith bucket cover the length ranging from $\alpha \cdot (I 1) + 1$ to $\alpha \cdot I$ characters
- •Recursion Variables:
 - $^{\rm o}~~{\rm d}^{s,l}$ as the most probable s-token sequence that is reduced to a summary in the lth length bucket

- Base Case:
 - $\mathbf{d}^{s,0} = \epsilon \cdots \epsilon$ (s-many)

• Base Case:

•
$$\mathbf{d}^{s,0} = \epsilon \cdots \epsilon$$
 (s-many)

$$\mathbf{d}^{1,l} = \begin{cases} \epsilon, & \text{if } l = 0\\ \underset{\mathbf{w}:u(\mathbf{w})\in[\alpha\cdot(l-1)+1,\alpha\cdot l]}{\operatorname{argmax}} v_1(\mathbf{w}), & \text{if } l > 0 \end{cases}$$

• Base Case:

•
$$\mathbf{d}^{s,0} = \epsilon \cdots \epsilon$$
 (s-many)

$$\mathbf{d}^{1,l} = \begin{cases} \epsilon, & \text{if } l = 0\\ \underset{\mathbf{w}:u(\mathbf{w})\in[\alpha\cdot(l-1)+1,\alpha\cdot l]}{\operatorname{argmax}} v_1(\mathbf{w}), & \text{if } l > 0 \end{cases}$$

• Recursive steps

$$\begin{aligned} \mathscr{D}_{1}^{s,l} &= \left\{ \mathbf{d}^{s-1,l} \oplus \epsilon \right\} \\ \mathscr{D}_{2}^{s,l} &= \left\{ \mathbf{d}^{s-1,l} \oplus \mathbf{d}_{s-1}^{s-1,l} \right\} \\ \mathscr{D}_{3}^{s,l} &= \left\{ \mathbf{d}^{s-1,l'} \oplus \mathbf{w}_{s} \, : \, \left(u(\mathbf{w}_{s}) + \sum_{\mathbf{d} \in \mathbf{d}^{s-1,l'}} u(\mathbf{d}) \right) \in [\alpha \cdot (l-1) + 1, \alpha \cdot l], \\ \mathbf{w}_{s} &\neq \epsilon, \mathbf{w}_{s} \neq \mathbf{d}_{s-1}^{s-1,l'}, \text{ and } l' \leq l \right\} \end{aligned}$$

• Recursive steps

$$\mathscr{D}_2^{s,l} = \left\{ \mathbf{d}^{s-1,l} \oplus \mathbf{d}^{s-1,l}_{s-1} \right\}$$

• Recursive steps

$$\mathscr{D}_2^{s,l} = \left\{ \mathbf{d}^{s-1,l} \oplus \mathbf{d}_{s-1}^{s-1,l} \right\}$$

• Recursive steps

$$\mathcal{D}_{1}^{s,l} = \left\{ \mathbf{d}^{s-1,l} \oplus \epsilon \right\}$$

$$\mathcal{D}_{2}^{s,l} = \left\{ \mathbf{d}^{s-1,l} \oplus \mathbf{d}_{s-1}^{s-1,l} \right\}$$

$$\mathcal{D}_{3}^{s,l} = \left\{ \mathbf{d}^{s-1,l'} \oplus \mathbf{w}_{s} : \left(u(\mathbf{w}_{s}) + \sum_{\mathbf{d} \in \mathbf{d}^{s-1,l'}} u(\mathbf{d}) \right) \in [\alpha \cdot (l-1) + 1, \alpha \cdot l], \\ \mathbf{w}_{s} \neq \epsilon, \mathbf{w}_{s} \neq \mathbf{d}_{s-1}^{s-1,l'}, \text{ and } l' \leq l \right\}$$

• Update recursion variables

$$\mathbf{d}^{s,l} = rgmax_{\mathbf{d}\in \mathscr{D}_1^{s,l}\cup \mathscr{D}_2^{s,l}\cup \mathscr{D}_3^{s,l}} \sum_{\mathrm{s}=1}^S v_s(\mathrm{d}_s)$$

• Gigaword

Setting	#	Approach		Len	ROUGE F1				Time
Setting					R-1	R-2	R-L	ΔR	Time
Supervised	1	NAR	Su et al. [34] (truncate)	38.43	32.28	14.21	30.56	0	0.016
	2		Qi et al. [29] (truncate)	27.98	31.69	12.52	30.05	-2.79	0.019
	3		Yang et al. [41] (truncate)	35.37	28.85	6.45	27.00	-14.75	_
	4		NACC (truncate)	34.15	33.12	13.93	31.34	1.34	0.011
	5		NACC (length control)	34.40	33.66	13.73	31.79	4.74	0.017
	6	Baseline	Lead-50 chars	49.03	20.66	7.08	19.30	-9.23	_
	7	Search	Schumann et al. [33] (truncate)	45.45	24.98	9.08	23.18	0.97	9.573
	8		Char constrained search	44.05	25.30	9.25	23.43	1.71	17.324
Unsupervised	9		Su et al. [34] (truncate)	45.24	24.65	8.64	22.98	0	0.017
	10		Qi et al. [29] (truncate)	44.54	24.31	7.66	22.48	-1.82	0.019
	11	NAR	Yang et al. [41] (truncate)	49.37	21.70	4.60	20.13	-9.84	
	12		NAUS [18] (truncate)	47.15	25.71	8.55	23.85	1.84	0.032
	12		NACC (truncate)	47.77	25.79	8.94	23.75	2,21	0.012
	13		NACC (length control)	47.03	27.45	8.87	25.14	5.19	0.025

Table 1: Performance on the Gigaword headline generation test set, where NAR stands for nonautoregressive. Len: Average number of characters in the predicted summaries. R-1, R-2, R-L: ROUGE-1, ROUGE-2, ROUGE-L. ΔR : The difference of total ROUGE (sum of R-1, R-2, and R-L) in comparison with the (previous) state-of-the-art NAR summarization system [34]. Time: Average inference time in seconds for one sample on an i9-9940X CPU and an RTX6000 GPU.

• DUC2004

# Approach		Approach		Time				
π	Approach			R-2	R-L	ΔR	Inne	
1	Baseline	Lead-75 chars	22.52	6.50	19.74	-4.97	_	
2	2 3 Search	Schumann et al. [33] (truncate)	26.09	8.03	22.86	3.25	30.362	
3		Char-constrained search	26.30	7.95	22.78	3.30	31.540	
4		Su et al. [34] (truncate)	24.67	7.25	21.81	0	0.017	
5	5 NAR	Qi et al. [29] (truncate)	22.79	5.91	20.05	-4.98	0.018	
6		NACC (truncate)	26.43	7.86	22.66	3.22	0.012	
7		NACC (length control)	28.37	7.74	24.30	6.68	0.030	

Table 2: Results on DUC 2004 dataset.

• Human evaluation

	Decoding	Wins	Ties	Loses	<i>p</i> -value	
Overell quality	Truncate	18%	44%	38%	0.0001	
Overall quality	Length control	38%	44%	18 %	0.0001	
Completeness	Truncate	22%	36%	42%	0.0002	
& fluency	Length control	42%	36%	22%	0.0002	

Table 3: Human evaluation comparing truncating and length-control decoding of our NACC approach on 150 samples selected from the Gigaword headline generation dataset in the unsupervised setting. The p-value is given by a two-sided binomial test.

• Length-transfer generation

 Generating summaries of different numbers of characters than the training target

Figure 3: Length-transfer performance of NACC and Su et al. [34].

Thank you!

Acknowledgments

The research is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under grant No. RGPIN2020-04465, the Amii Fellow Program, the Canada CIFAR AI Chair Program, a UAHJIC project, a donation from DeepMind, and Compute Canada (www.computecanada.ca).

References

Itsumi Saito, Kyosuke Nishida, Kosuke Nishida, Atsushi Otsuka, Hisako Asano, Junji Tomita, Hiroyuki Shindo, and Yuji Matsumoto. Length-controllable abstractive summarization by guiding with summary prototype. In: arXiv preprint arXiv:2001.07331, 2020.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Simon Baker, Piji Li, and Nigel Collier. Non-autoregressive text generation with pre-trained language models. In EACL, pages 234–243, 2021.