A Character-Level Length-Control Algorithm for
Non-Autoregressive Sentence Summarization

Puyuan Liu, Xiang Zhang, Lili Mou

puyuan@ualberta.ca, xzhang23@ualberta.ca
doublepower.mou@gmail.com

Dept. Computing Science, University of Alberta
Alberta Machine Intelligence Institute (Amii)

NeurlPS-2022 UNIVERSITY OF &
ALBERTAClmll

mailto:doublepower.mou@gmail.com

Summarization Task

Source text Summary

Summarization Task

o Applications: headline generation

e (Granularities:
o0 Single-document summarization
o Multi-document summarization

O Sentence-level summarization -
Generate summaries for an input sentence

Example: The amphibia, which is the animal class to which our
frogs and toads belong, were the first animal to crawl from the sea
and inhabit the earth -> The first animals to leave the sea and live

on land were the amphibia.

Background

e | ength control for text summarization
o Has real-world applications

o ROUGE scores being sensitive to the summary
length (Itsumi et al., 2020)

Background

e | ength control for text summarization
o Has real-world applications

o ROUGE scores being sensitive to the summary
length (Itsumi et al., 2020)

* Previous length-control methods

o Only controlling number of words in summaries

o Cannot explicitly control summary length

Our Approach

e QOverview

1) Non-autoregressive model
2) Character-level length-control algorithm

(a) Model architecture (b) Decoding algorithm Generation slots
W11

/g\ N

"/

af

Transformer

i)
Embedding

—

US maker,
-0.3

Factory ’ Factory L Factory
has, -0.3 has, -0.5 has a, -0.7

Length buckets [

i) : : :
Input: Factory orders for \
manufactured goods rose
2.3 percent in september, 53 % raice
the commerce department of orders in

Factory has a

said here thursday. september

Non-autoregressive

Character-level length-control algorithm
model

Our Approach

Non-autoregressive model

o Encoder-only architecture

o Utilizing source—target correspondence
= suitable for summarization

(a) Model architecture

e(Q\ —
le/Q

xil5is%

Transformer

QOO]

Egelele)

2

Embedding
i)

Input: Factory orders for
manufactured goods rose
2.3 percent in september,
the commerce department
said here thursday.

Our Approach

* Non-autoregressive model

o Encoder-only architecture
o Utilizing source—target correspondence
= suitable for summarization
o (Generating at different output slots in parallel
o High inference efficiency

o Local predicted probabilities
= dynamic programming for length control

O |ndependent probability

CTC Loss

e Non-autoregressive mode generates the output of the
same length as the input, which can not be summary

o0 Padding the target with empty €

© Example: | € like reading € € € € books
= | like reading books

¢ CTC (ravessta. 2009 Training objective: MLE) _ P(w|x)

- Computed by dynamic programming

w:'(w)=y

Our Approach

e Character-level length control
o0 Based on dynamic programming

o Formulating length control as a Knapsack problem
= Number of characters in a word as the weight v(-)
= Predicted log-probability of a word as the value u(-)

maximize Z Vs(Ws), subject to Z u(y) <

Wl’a-- ,WS

s=1 YEY
y:I‘ W1, W QS

word sequence budget

Dynamic programming
* Divide the lengths into buckets for efficient inference

o |th bucket cover the length ranging froma - (I — 1) +
1 to a - | characters

Dynamic programming

* Divide the lengths into buckets for efficient inference.

o |th bucket cover the length ranging froma - (| — 1) +
1 to a - | characters

eRecursion Variables:

O s,l :
d™" 35 the most probable s-token sequence that is
reduced to a summary in the lth length bucket

Dynamic programming

® Base Case:

o d°Y =€ € (s-many)

(b) Decoding algorithm Generation slots

= [1,5] o;%
Jq-.; (&‘ % eee
_ 1 v A

6,10 S\ \&
g &1 T\,

D |

'§D [11,15] % hFactoory a,-0.2 hFacto;)y
S has, -0.2 as, -0.5 has, -0.4| 135 @ - v
—

(b) Decoding algorithm

Length buckets [

Dynamic programming

® Base Case:

s,0 _
o d¥ =

dl,l

€ - - - € (s-many)

€)
argmax

if [=0

’Ul(W), if [>0

wiu(w)€la-(I—1)+1,a-]

Generation slots

has, -0.2

Factory
has, -0.5

|2, -0.2

has, -0.4

EEEE, ...

Factory
has a, -0.7

Dynamic programming

® Base Case:

@
€, if l=0
dl,l _ .
argmax vi(w), if [>0
® wiu(w)€la-(I—1)+1,a-]
(b) Decoding algorithm Generation slots
W11 . Wi:2 W1:3 Wi:4
0.2
0 ¢-03 €€, -0.5 EEE, ... EEEE, ...
us,
~ [1,5] us, 01 % s, -0.2
L~ 1 |Factory,| %% US maker,
3 (6,101 (™355 &‘i -0.3
P |
- . A a, -0.2
11,15 L. Factory Factory | Factory
E” [; N/A @7 has, -0.3 has, -0.2 has, -0.5 h has a, -0.7
@ ’ as, -0.4

ds¥ = €- .- € (s-many)

Dynamic programming
® Recursive steps

@1 _{ds 1l® }

®
. @.zsl_{ds 1l®d8 1,1
. @ésl _ {ds—ll EBWS (u(Ws)—|— Z ,’u,(d)) [(l—1)+1 87 l]

Ws # €, Wg # dgj’l,, and [’ < l}

Dynamic programming

® Recursive steps

_@.29,1 _ {ds—l,l o dgj’l}

Dynamic programming

® Recursive steps

@és,l — {ds—l,l EB di:%,l

o
(b) Decoding algorithm Generation slots
W11 . Wi:2 W1:3 W14 Wi:s
0 EEEE, . e
m -
S [6,10
S .
Qo N A
< : - 3, -0.
11,15 . Factory Factory
% [] : has, -0.5 : has a, -0.7
—

Dynamic programming
® Recursive steps

@f,l — {ds—l,l D 6}

®
S, s—1, s—1,1
. gzl:{d 1l€DdS_:]l_
g {ds—l,l,@ws ; (u(ws)+ 3 u(d)) cla-(1—1)+1,a-1,

Ws # €, Wg # dgj’l,, and [’ < l}

e Update recursion variables
S

ds! = argmax E vg(ds)
s,l s,l s,l

Experiments

e (Gigaword
Setting # Approach Len R E_(%UGERII AR Time
| Su et al. [34] (truncate) 38.43 | 32.28 14.21 30.56 0 0.016
2 Qi et al. [29] (truncate) 2798 | 31.69 12.52 30.05 -2.79 | 0.019
Supervised 3 NAR anoetal (41 ncate R 8 (.4 N0 14 _
4 NACC (truncate) 0.011
5 NACC (length control)
6 | Baseline Lead-50 chars 49.03 | 20.66 7.08 19.30 -9.23 -
7 Search Schumann et al. [33] (truncate) | 45.45 | 24.98 9.08 23.18 0.97 9.573
8 Char constrained search 44.05 | 25.30 9.25 2343 1.71 | 17.324
Unsupervised 9 Su et al. [34] (truncate) 45.24 | 24.65 864 22.98 0 ().(:)17
‘ ‘ 10 Qi et al. [29] (truncate) 44.54 | 24.31 7.66 2248 -1.82 0.019
11 NAR Yang et al. [41] (truncate) 49.37 | 21.70 4.60 20.13 -9.84 >
12 N A 18R] (truncate / R R R/ ()
12 NACC (truncate) 23.75 2,21
13 NACC (length control)

Table 1: Performance on the Gigaword headline generation test set, where NAR stands for non-

autoregressive. Len: Average number of characters in the predicted summaries. R-1, R-2, R-L:
ROUGE-1, ROUGE-2, ROUGE-L. AR: The difference of total ROUGE (sum of R-1, R-2, and R-L)

in comparison with the (previous) state-of-the-art NAR summarization system [34

]. Time: Average

inference time in seconds for one sample on an 19-9940X CPU and an RTX6000 GPU.

Experiments

e DUC2004

ROUGE Recall .
Approach R R R AR Time
1 | Baseline [LLead-75 chars 2252 650 19.74 -4.97 —
2 Search Schumann et al. [33] (truncate) | 26.09 8.03 22.86 3.25 | 30.362
3 Char-constrained search 26.30 795 22.78 3.30 | 31.540
4 Su et al. [34] (truncate) 24.67 7.25 21.81 0 0.017
5 O1 et al. [29] (truncate 22779 591 2005 -498 0.018
6 NAR —
7

Table 2: Results on DUC 2004 dataset.

Experiments

e Human evaluation

Decoding Wins Ties Loses | p-value
Truncate 18% 44% 38%

Overall quality Length control | 38% 44% 18% 0-0001
____Truncate T o 42%
Completeness : 0.0002

& fluency Length control | 42% 36% 22%

Table 3: Human evaluation comparing truncating and length-control decoding of our NACC approach
on 150 samples selected from the Gigaword headline generation dataset in the unsupervised setting.
The p-value 1s given by a two-sided binomial test.

Experiments

e | ength-transfer generation

o (Generating summaries of different numbers of characters
than the training target

Su et el. [30]
NACC

= N N N
oo o N R
I

Average ROUGE Score
=
(@)

.

30 40 50 60 70 80 90
Length Budget (chars)

Figure 3: Length-transfer performance of
NACC and Su et al. [34].

Thank you!

Acknowledgments

The research is supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC) under grant No. RGPIN2020-04465, the Amii
Fellow Program, the Canada CIFAR Al Chair Program, a
UAHJIC project, a donation from DeepMind, and
Compute Canada (www.computecanada.ca).

References

ltsumi Saito, Kyosuke Nishida, Kosuke Nishida, Atsushi Otsuka, Hisako Asano, Junji Tomita,
Hiroyuki Shindo, and Yuji Matsumoto. Length-controllable abstractive summarization by guiding
with summary prototype. In: arXiv preprint arXiv:2001.07331, 2020.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Simon Baker, Piji Li, and Nigel Collier.
Non-autoregressive text generation with pre-trained language models. In EACL, pages 234-243,

2021.

