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Our Algorithm (CLVR)

Novel Connection from DRO to GLP

Reformulation to GLP

Adaptive Restart via Sharpness w.r.t LPMetricOverview
We study a class of generalized linear programs (GLP) in a large-scale 
setting, which includes a simple, possibly non-smooth convex regularizer 
and simple convex set constraints:


.


1) By reformulating (GLP) as an equivalent convex-concave min-max 
problem


 ,


we design an efficient, scalable first-order algorithm named Coordinate 
Linear Variance Reduction (CLVR). CLVR yields improved complexity 
results for (GLP) that depend on the max row norm of the linear constraint 
matrix  rather than the spectral norm. We further introduce two strategies 
to improve the convergence rates: 1) Lazy updates when the regularization 
term and constraints are coordinate-separable, and 2) an adaptive restart 
scheme when .


2) By introducing sparsely connected auxiliary variables, we show that 
Distributionally Robust Optimization (DRO) problems with ambiguity sets 
based on both -divergence and Wasserstein metrics can be reformulated 
as (GLPs).

min
x

{cTx + r(x) : Ax = b, x ∈ 𝒳} (GLP)

min
x∈ℝd

max
y∈ℝn {cTx + r(x) + yTAx − yTb} (PD-GLP)
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Generalized Linear Programs (GLP)

Applications of GLP

• Linear programming

• Reinforcement learning [De Farias and Van Roy, 2003]

• Optimal transport [Villani, 2009]

• Neural network verification [Liu et al., 2020]

• Distributionally robust optimization [This work]




•  is a closed convex set in  admitting efficient projections

•  is a -strongly convex regularizer admitting efficiently computable 

proximal operators, where . When  is only convex, we say 

• (GLP) reduces to a linear program (LP) when  and  polyhedral

min
x

{cTx + r(x) : Ax = b, x ∈ 𝒳} (GLP)
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where  is the uncertainty set around the uniform

distribution  and  is the loss function.


• DRO can be seen as a robust generalization to empirical risk 
minimization problems. In DRO, we minimize the worst case risk 
based on some ambiguity sets over the probability distribution of 
training data


min
x∈𝒳

sup
p∈𝒫

n

∑
i=1

pig( f(x, ai), bi)

𝒫
1/n g(z, b)

• We consider a simplified setting with linear predictors and binary classes





and  can be a non-smooth loss function (e.g., hinge loss)

• We show that such DRO problems based on -divergence and 

Wasserstein metric can be reformulated into equivalent GLPs
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We aim to solve 

 ,


where some of existing algorithms for solving (PD-GLP) include PDHG 
[CP11], SPDHG [CERS18], VRPDA2 [SWD21], PURE-CD [ACF20]. We 
introduce three novel approaches to improve upon the existing results:

1. Based on VRPDA2 and by exploiting the linear 

structure of  w.r.t. , CLVR removes an 
expensive initialization step requiring a single 
access to full-data


2. Also using the linear structure, CLVR uses an  
extrapolation term in the output point, which 
further cancels a variance term


3. When  is sparse and when  and  are coordinate separable, we 
can handle updates in a lazy manner only when coordinates are sampled.


 in SPDHG     in CLVR    


where  is the max row norm of  and 

min
x∈ℝd

max
y∈ℝn {ℒ(x, y) := cTx + r(x) + yTAx − yTb} (PD-GLP)

ℒ(x, y) y
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j∈[n]

∥Aj∥ A R ≤ ∥A∥ ≤ nR

DRO Formulation

• Standard form LP has a sharpness property w.r.t. the normalized duality 
gap [AHLL21], and it can be used to obtain linear convergence rates in 
first-order methods


• Instead of the normalized duality gap, we use the classical LPMetric 
[H52] as our measure of optimality and showed its sharpness:


LPMetric(x, y) = ∥max{x, 0}∥2
2 + ∥Ax − b∥2

2 + ∥max{−ATy − c, 0}∥2
2 + | max{cTx + bTy,0} |2

Numerical Experiments

Comparison Between Values of L when R = 1

We solve the linear program reformulation for DRO with Wasserstein 
distance of  norm and hinge loss, where we also apply our novel 
adaptive restart scheme using LPMetric.

ℓ1

Comparison with Primal-dual Algorithms

Comparison with Production Linear Programming Solvers

Acknowledgements
CS was supported in part by the NSF grant 2023239. JD and CYL acknowledge support from the NSF award 2007757. JD was also 
supported by the Office of Naval Research under contract number N00014-22-1-2348 and the Wisconsin Alumni Research Foundation. 
SW was supported by NSF grants 2023239 and 2224213, the DOE under subcontract 8F-30039 from Argonne National Laboratory, and 
the AFOSR under subcontract UTA20-001224 from UT-Austin. Part of this work was done while JD, CS, and SW were visiting the 
Simons Institute for the Theory of Computing.


