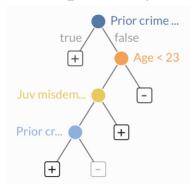
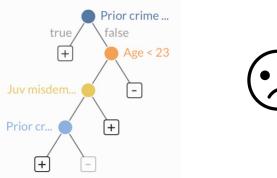
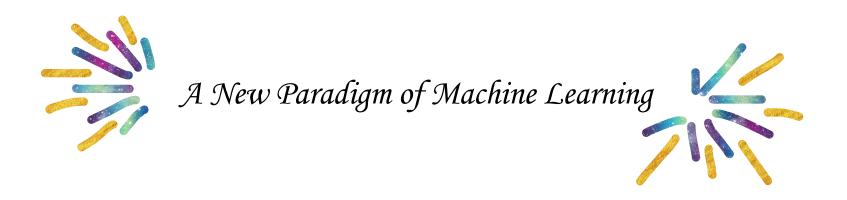
Exploring the Whole Rashomon Set of Sparse Decision Trees

Rui Xin*, Chudi Zhong*, Zhi Chen*, Takuya Takagi, Margo Seltzer, Cynthia Rudin

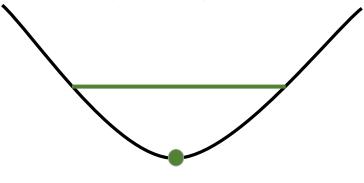



The Universal Paradigm of Machine Learning

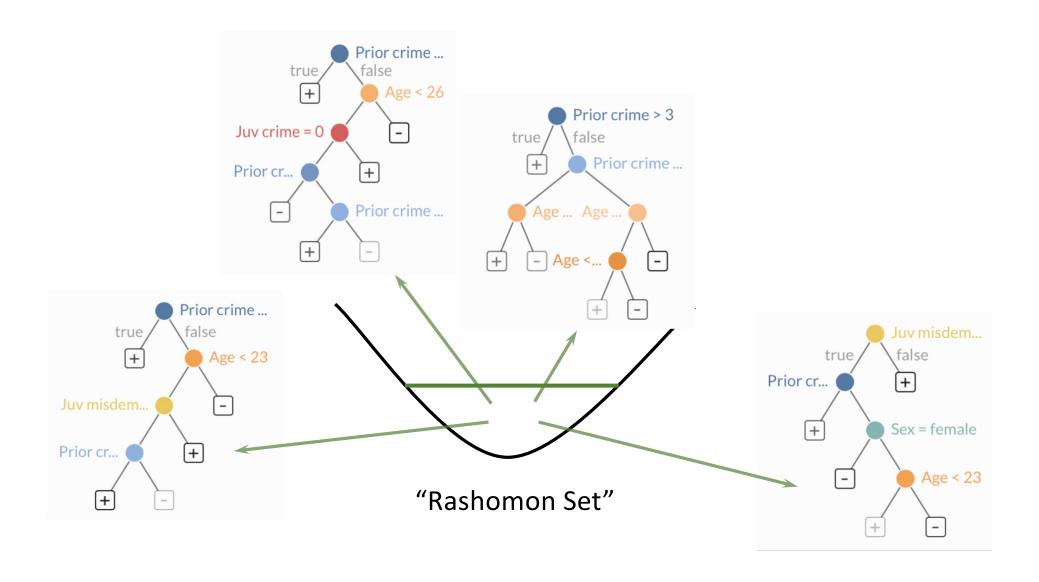
Training Set \longrightarrow Algorithm \longrightarrow Predictive Model minimize loss on training set predict y from x

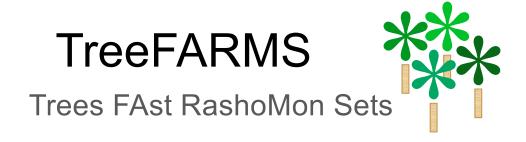


Training Set \longrightarrow Algorithm \longrightarrow Predictive Model minimize loss on training set predict y from x



"Uhh, there's something wrong with this model"




Training Set \longrightarrow Algorithm \longrightarrow Many Predictive Models achieve low loss on training set

Obj = Misclassification Error + λ (#leaves)

"Rashomon Set"

- Finds all optimal and almost-optimal sparse decision trees.
- Let users choose between trees.

Ingredients:

- Dynamic programming formulation
- Theorems that reduce the search space
- The model set representation: data structure for efficiently storing and evaluating lots of trees.

Do other methods produce all almost-optimal models?

They do not.

In 46 seconds on Monk2...

BART

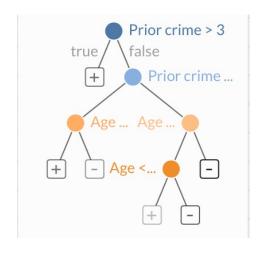
Random Forest

O / 20,731 unique trees

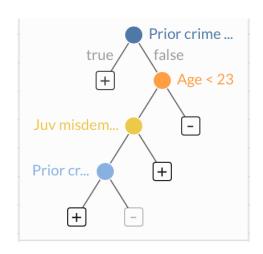
CART+sampling

7 / 20,398 unique trees

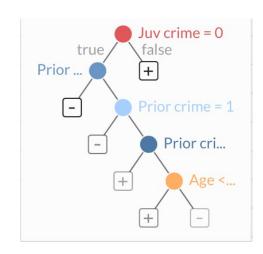
TreeFARMS


105,782,431 / 105,782,431 unique trees

- Model-free Variable importance analysis
- Rashomon sets for other metrics
- Robustness to removal of data


- Model-free Variable importance analysis
- Rashomon sets for other metrics
- Robustness to removal of data

Is variable *v* important to *all* good models?


Is variable *v* important to *none* of the good models?

doesn't depend on variable at all

depends on variable a lot

depends on variable a little bit

- Model-free Variable importance analysis
- Rashomon sets for other metrics
- Robustness to removal of data

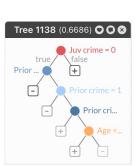
- The set of almost-optimal accurate models includes:
 - ullet all almost-optimal F1-score models

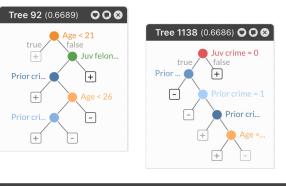
All best F1-score models

All Accurate Models

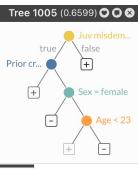
- The set of almost-optimal accurate models includes:
 - all almost-optimal F1-score models
 - all almost-optimal balanced accuracy models

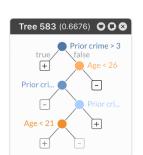
All best balanced accuracy models

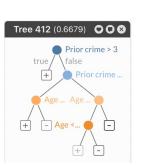

All Accurate Models


- Model-free Variable importance analysis
- Rashomon sets for other metrics
- Robustness to removal of data

• The set of almost-optimal accurate models is robust to removal of some data points.


All accurate models after removing data


All Accurate Models



A TimberTrek Curating decision trees that align with human knowledge

TimberTrek is an interface for TreeFARMS

TIMBERTREK: Exploring and Curating Sparse Decision Trees with Interactive Visualization

Zijie J. Wang¹ Chudi Zhong² Rui Xin² Takuya Takagi³ Zhi Chen² Duen Horng Chau¹ Cynthia Rudin² Margo Seltzer⁴

Jay Wang

bit.ly/timbertrek

Exploring the Whole Rashomon Set of Sparse Decision Trees


Rui Xin^{1*} Chudi Zhong^{1*} Zhi Chen^{1*}

Takuya Takagi² Margo Seltzer³ Cynthia Rudin¹

¹ Duke University ² Fujitsu Laboratories Ltd. ³ The University of British Columbia {rui.xin926, chudi.zhong, zhi.chen1}@duke.edu takagi.takuya@fujitsu.com, mseltzer@cs.ubc.ca, cynthia@cs.duke.edu

Paper: https://arxiv.org/abs/2209.08040

Code: https://github.com/ubc-systopia/treeFarms

Rui Xin

Chudi Zhong

Takuya Takagi

Margo Seltzer

Cynthia Rudin