Learning and Covering Sums of Independent Random Variables with Unbounded Support

Alkis Kalavasis NTUA Konstantinos Stavropoulos UT Austin Manolis Zampetakis UC Berkeley

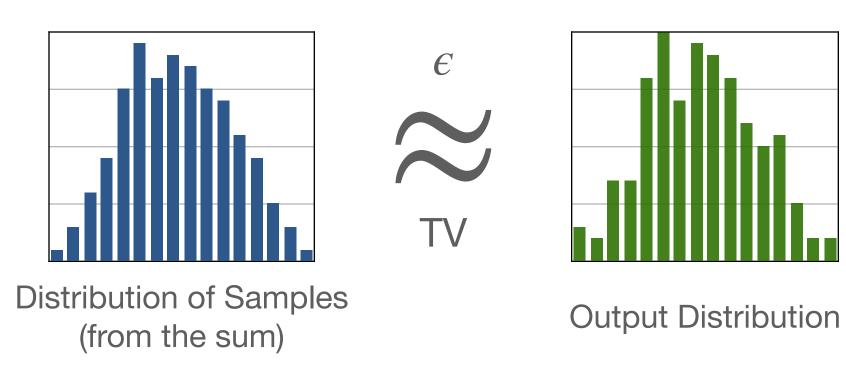
Setup Sums of Independent Integer Random Variables (SIIRVs)

We focus on a fundamental specific type of integer random variables:

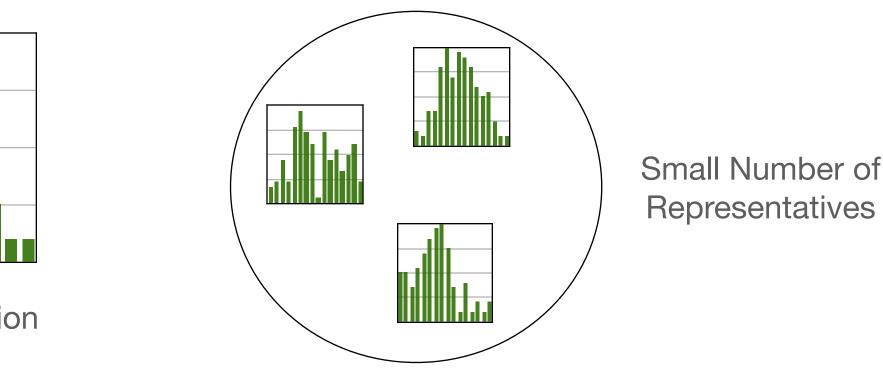
$$\sum_{i=1}^{n} X_i \text{ with independent}$$

Tasks:

1. Density estimation



- ndent, integer valued terms
 - 2. Sparse Covering



Setup Sums of Independent Integer Random Variables (SIIRVs)

We focus on a fundamental specific type of integer random variables:

$$\sum_{i=1}^{n} X_i \text{ with independent}$$

Tasks:

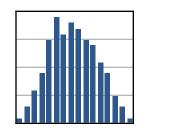
1. Density estimation

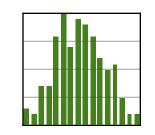
Given m i.i.d samples from $X = \sum_{i=1}^{n} X_i$, output Y such that

$$d_{TV}(Y,X) \le \epsilon$$

 ϵ

 \approx





Distribution of Samples (from the sum)

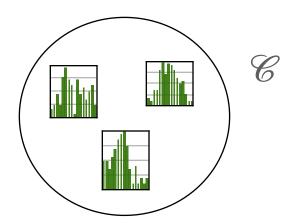
Output Distribution

ndent, integer valued terms

2. Sparse Covering

For a family \mathscr{F} of SIIRVs, identify a small set of distributions $\mathscr{C}(|\mathscr{C}| < \infty)$ so that for any $X \in \mathscr{F}$, there exists $Y \in \mathscr{C}$ with

 $d_{TV}(Y,X) \leq \epsilon$



Setup Sums of Independent Integer Random Variables (SIIRVs)

We focus on a fundamental specific type of integer random variables:

$$\sum_{i=1}^{n} X_i \text{ with independent}$$

Tasks:1. Density estimation

Challenge 1: $m = \Theta_n(1)$ Sample Complexity independent from n Ident, integer valued terms

2. Sparse Covering

Challenge 2: $\mathscr{C} \subseteq \mathscr{F}$ Representatives are members of the considered family of SIIRVs (proper covering)

Motivation Sums of Independent Integer Random Variables (SIIRVs)

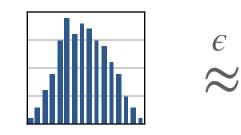
We focus on a fundamental specific type of integer random variables:

 $\sum_{i=1}^{n} X_i$ with independent, integer valued terms

Applications (of challenges 1 and 2) in:

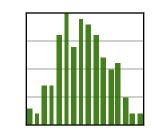
Mechanism Design: Designing Auctions [GT15] Game Theory: Computing Equilibrium in Anonymous Games [DDKT16],[DKS16], [GT17],[CDS17]

Challenge 1. Sample Complexity independent from n



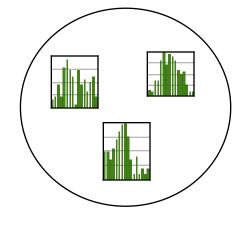
Distribution of Samples

(from the sum)



Output Distribution

Challenge 2. Representatives are SIIRVs themselves (proper covering)



Stochastic Optimization [De18]

Previous results Sums of Independent Integer Random Variables (SIIRVs)

We focus on a fundamental specific type of integer random variables:

 $\sum_{i=1}^{n} X_i$ with independent, integer valued terms

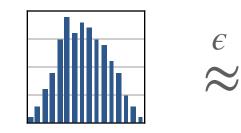
Restrict the distributions of the terms X_i to be

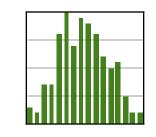
Bernoulli: Learning and Covering Poisson Binomial Distributions [DP15, DDS15, DKS16] Supported on $\{0, ..., m - 1\}$: Bounded Support [DDO+13, DKS16]

poly $(1/\epsilon)$ samples & *proper* sparse covers

 $poly(m/\epsilon)$ samples & sparse covers

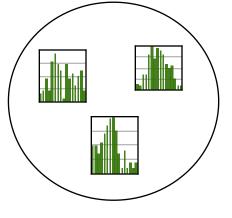
Challenge 1. Sample Complexity independent from n





Distribution of Samples (from the sum)

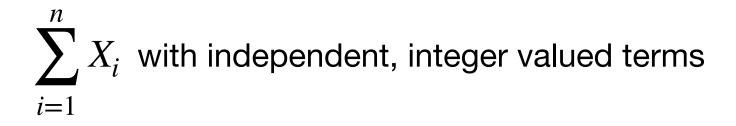
Challenge 2. Representatives are SIIRVs themselves (proper covering)



High dimensional (not integer), again with bounded support: [DKT15, DDKT16, DKS16]

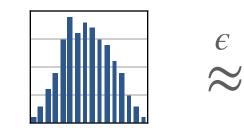
Previous results Sums of Independent Integer Random Variables (SIIRVs)

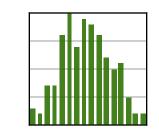
We focus on a fundamental specific type of integer random variables:



However, in the worst case, if the terms X_i have:

Collective support of size \geq 4: The sample complexity scales with the maximum value of the support [DLS18] **Challenge 1.** Sample Complexity independent from n





Distribution of Samples (from the sum)

Output Distribution

Challenge 2. Representatives are SIIRVs themselves (proper covering)

Unbounded support:

The sample complexity scales (polynomially) with n [DDO+13]

Our results Warm-up: Addressing Challenge 1 for "nice" unbounded distributions

We focus on a specific type of integer random variables:

 $\sum_{i=1}^{n} X_i$ with independent, integer valued terms

Theorem. Under Assumption 1, the distribution of an unknown SIIRV can be estimated up to error ϵ in statistical distance, using poly $(1/\epsilon)$ independent samples from the sum. (challenge 1)

Moreover, any family of SIIRVs that satisfy Assumption 1, can be ϵ -covered in statistical distance by the union of a collection of $2^{\text{poly}(1/\epsilon)}$ SIIRVs with the set of Discretized Gaussian random variables.

Assumption 1.

Each term X_i is "nice", i.e.,

- 1. Unimodal & far from deterministic
- 2. Modes within a bounded region
- 3. Bounded fourth central moment

Our results Main Result: SIIERVs

We focus on a specific type of integer random variables:

 $\sum_{i=1}^{n} X_i$ with independent, integer valued terms

Theorem. Under Assumption 2, the distribution of an unknown \mathscr{E} -SIIERV can be estimated up to error ϵ in statistical distance, using $\tilde{O}(k/\epsilon^2)$ independent samples from the sum. The output of the learning algorithm is itself an \mathscr{E} -SIIERV. (challenge 1)

Moreover, the family of \mathscr{E} -SIIERVs admits a proper sparse cover of size $2^{\tilde{O}(k/\epsilon^2)} + n^2 \cdot O(1/\epsilon)^k$.

Assumption 2.

Each term X_i is belongs in a given "nice" exponential family \mathscr{E} with k parameters. Remark: we then call the sum an \mathscr{C} -SIIERV

(challenge 2)

Proof Ingredients

• Sparsely covering a "nice" exponential family \mathscr{C} . (case n = 1).

Geometric properties of polyhedral cones \Rightarrow Bound the range of parameters Covering the bounded version of the parameter space \Rightarrow Covering \mathscr{E}

• (Proper) structural results for \mathscr{E} -SIIERVs.

Sparse Case (small *n***):** Use sparse covers for \mathscr{C} .

Dense Case (large *n*): Use appropriate Berry-Esseen type bound, unimodality and continuity of moments.

• Learning \mathscr{E} -SIIERVs.

Given structural results, carefully apply standard methods to design a learning algorithm.

Proof Ingredients

• Sparsely covering a "nice" exponential family \mathscr{E} . (case n = 1).

Geometric properties of polyhedral cones \Rightarrow Bound the range of parameters Covering the bounded version of the parameter space \Rightarrow Covering \mathscr{E}

• (Proper) structural results for \mathscr{E} -SIIERVs.

Sparse Case (small *n***):** Use sparse covers for \mathscr{C} .

Dense Case (large *n*): Use appropriate Berry-Esseen type bound, unimodality and continuity of moments.

• Learning \mathscr{E} -SIIERVs.

Given structural results, carefully apply standard methods to design a learning algorithm.

Thank you!