

FedSR: A Simple and Effective Domain Generalization Method for Federated Learning

A. Tuan Nguyen

Philip Torr

Ser-Nam Lim

1

Introduction

Federated Learning (FL) refers to the decentralized and privacy-preserving machine learning framework.

□ There is often **distribution shift** among the clients' data.

□ However, FL techniques often only focus on performance on the source domains/clients, **not** how the model **generalize to an unseen domain** under some distribution shifts.

□ For example, if K clinical institutions in the US and UK collaborate to train a model with their decentralized data, the goal for the model is not only to perform well on their data distribution, but also to generalize to unseen target data (e.g., from a different country).

Introduction

□ In this paper, we incorporate the **Domain Generalization** (DG) problem into the FL setting to tackle this generalization issue.

A common and successful method for DG is **representation alignment**. However, existing works require sharing and comparing data among domains, which is **not allowed in FL**.

U We propose approaches for **implicit alignment**, that completely respect the the privacy aspect of FL.

□ In particular, we propose to learn a **simple representation** of the data, with a L2-norm regularizer and a conditional mutual information regularizer.

Use also show that these regularizers help to implicitly aligns the representation.

Problem Setting

- □ Representation learning framework:
 - **\Box** Representation mapping: p(z|x)
 - Classifier: $\hat{p}(y|z)$
- **D** Predictive distribution: $\mathbb{E}_{p(z|x)}[\hat{p}(y|x)]$
- □ Loss per datapoint (x, y): $-\log \mathbb{E}_{p(z|x)}[\hat{p}(y|x)]$
- □ Local loss function of a client/domain *i* with data distribution $p_i(x, y)$ $\mathbb{E}_{p_i(x,y)} \left[-\log \mathbb{E}_{p(z|x)} [\hat{p}(y|x)] \right]$

Global loss over all client:

$$\frac{1}{n_clients} \sum_{i} \mathbb{E}_{p_i(x,y)} \left[-\log \mathbb{E}_{p(z|x)} [\hat{p}(y|x)] \right]$$

4

Approach

□ The conventional loss function of FL (previous slide) only focus on performance on the source clients *i*'s.

□ To learn a generalizable representation, we propose to use common regularization techniques to restrict the complexity of the representation, hoping that it would learn essential information and ignore spurious correlation.

□ We also show both **theoretically** and **empirically** that these regularizers leads to better marginal and conditional representation alignment.

Approach: L2-norm Regularizer

We regularize the l2-norm of the representation:

$$\ell_i^{L2R} = \mathbb{E}_{p_i(x)} \left[\mathbb{E}_{p(z|x)} \left[\left| \left| z \right| \right|_2^2 \right] \right]$$

Connection to **marginal alignment** of the representation (details in our paper).

Approach: Conditional Mutual Information

□ We minimize a tractable upper bound of the conditional mutual information $I_i(x, z|y)$:

$$\ell_i^{CMI} = \mathbb{E}_{p_i(x,y)} \left[KL[p(z|x)|r(z|y)] \right]$$

With r(z|y) being a learnable variational distribution.

Connection to **conditional alignment** of the representation (details in our paper).

Quantitative:

			PACS					
Models		Backbone	Α	С	Р	S	Average	
Centralized Methods	DGER [47] DIRT-GAN [31]	Resnet18 Resnet18	80.70 82.56	76.40 76.37	96.65 95.65	71.77 79.89	81.38 83.62	
FL Methods	FedAVG [28] FedADG [45] FedCMI (ours) FedL2R (ours) FedSR (ours)	Resnet18 Resnet18 Resnet18 Resnet18 Resnet18	77.8±0.5 77.8±0.5 80.8±0.4 82.2±0.4 83.2±0.3	72.8±0.4 74.7±0.4 73.7±0.2 75.8±0.3 76.0±0.3	91.9±0.5 92.9±0.3 92.8±0.5 92.8±0.4 93.8±0.5	78.8±0.3 79.5±0.4 79.5±0.2 81.6±0.1 81.9±0.2	80.3 81.2 81.7 83.1 83.7	

Table 2: PACS. Reported numbers are from 3 runs

Quantitative:

	OfficeHome							
Models		Backbone	A	С	Р	R	Average	
Centralized	Mixup [44]	Resnet50	64.7	54.7	77.3	79.2	69.0	
Methods	CORAL [38]	Resnet50	64.4	55.3	76.7	77.9	68.6	
	FedAVG [28]	Resnet50	62.2±0.9	55.6±0.9	75.7±0.2	78.2±0.2	67.9	
	FedADG [45]	Resnet50	63.2±0.9	57.0±0.2	76.0±0.1	77.7±0.5	68.4	
FL	FedCMI (ours)	Resnet50	61.8±0.5	55.5±0.9	76.3±0.1	77.4±0.1	67.8	
Methods	FedL2R (ours)	Resnet50	64.5±0.3	56.5±0.5	76.1±0.2	77.9±0.2	68.8	
	FedSR (ours)	Resnet50	65.4±0.5	57.4±0.2	76.2±0.6	78.3±0.3	69.3	

Table 3: OfficeHome. Reported numbers are from 3 runs

Quantitative:

			DomainNet						
Models		Backbone	С	Ι	Р	Q	R	S	AVG
Centralized	MLDG [21]	Resnet50	59.5	19.8	48.3	13.0	59.5	50.4	41.8
Methods	CORAL [38]	Resnet50	58.7	20.9	47.3	13.6	60.2	50.2	41.8
	FedAVG [28]	Resnet50	59.3±0.7	16.5±0.9	44.2±0.7	10.8±1.8	57.2±0.8	49.8±0.4	39.6
	FedADG [45]	Resnet50	60.9±0.6	17.2±0.2	44.3±0.2	12.4±0.2	57.6±0.9	50.3±0.8	40.4
FL	FedCMI (ours)	Resnet50	59.0±0.9	18.0±0.7	44.6±0.5	12.2±0.4	56.2 ± 0.2	50.0 ± 0.4	40.0
Methods	FedL2R (ours)	Resnet50	60.2±0.6	18.1±0.4	44.9±0.6	11.0±0.9	57.8±0.4	51.5±0.7	40.6
	FedSR (ours)	Resnet50	61.0±0.6	18.6 ± 0.4	45.2±0.5	13.4±0.6	57.6 ± 0.2	51.8±0.3	41.3

Table 4: DomainNet. Reported numbers are from 3 runs

Qualitative: Our method leads to better alignment of the representation.

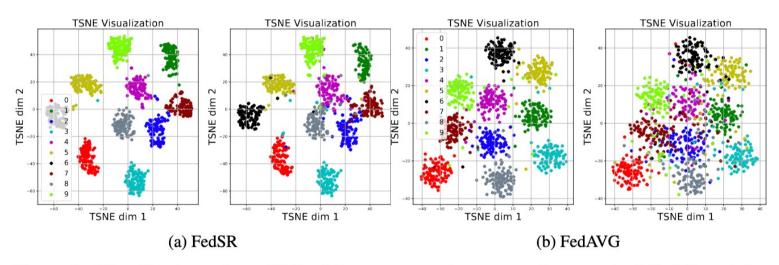


Figure 1: Visualization using t-SNE of the representation space of our method FedSR and the baselines FedAVG. For each method, the left subfigure corresponds to one source domain \mathcal{M}_{15} and the right one corresponds to the target domain \mathcal{M}_0 . Each color represents a digit class.