Navigating Memory Construction by Global Pseudo-Task Simulation for Continual Learning (Paper Id: 6620)

Yejia Liu* UC Riverside

Wang Zhu*

Shaolei Ren UC Riverside

(*: authors contributed equally)

Continual Learning (CL)

• Desiderata

- Adapt new knowledge
- Maintain old skills
- Constant memory
- Zero-shot learning
- Backward transfer

(Image credit: CIFAR10)

Experience Replay (ER)

Challenges

Challenge 1: global objective - L^G has no direct relationship with \mathcal{M}

- Most ER works optimize one single task with the memory buffer at a time
- The objective of CL is to achieve the minimum loss across *all* experienced tasks

Challenge 2: long task sequence - a remaining challenge in the current CL regime

- Random sampling squeezes out class representations
- Per-class sampling not exploits the generalization benefits of random sampling
- Lack of dynamic memory construction policy

Inspiration – Global Pseudo-Task Simulation (GPS)

• Explicitly optimize the global loss as a function of memory configuration

- Mimic the forgetting pattern for current task caused by future tasks
 - Similar learning difficulty of individual task on widely used vision benchmarks
 - Limited zero-shot transfer ability

A Starting Point: Offline Setup

• Res and Ring-Full mixed policy based on the switching point for each task.

Global Pseudo-task Simulation (GPS): Online Setup

• Approximate the switching point

approx switching point simulated final parameters $\widetilde{s_j} = \underset{arg \min \mathbb{E}_{(x_j, y_j) \sim P_j} \ell(y_j, f(x_j; \widetilde{\theta}_{j:T})) \quad f(x_j; \widetilde{\theta}_{j:T}) \quad f(x_j; \widetilde{\theta}$

- Objective function containing simulation
- Synthesize pseudo task with similar difficulty
- Pseudo memory construction by binary search

Key Results: Compare to ER Baselines

- Dynamic memory construction outperforms ER baselines and provide stability
- GPS using permutation is a good approximation

$\begin{array}{c} \text{Method} \\ \mathcal{M} \end{array}$	Simulation	P-MNIST 1000	S-CIFAR-10 200	S-CIFAR-100 2000	TinyImageNet 2000
ER-Res	-	86.55 ± 0.48	92.01 ± 0.80	81.38 ± 0.51	57.50 ± 0.54
ER-Ring-Full	-	84.33 ± 0.65	91.53 ± 0.56	81.16 ± 0.65	54.73 ± 0.32
ER-Hybrid	-	86.84 ± 0.35	92.06 ± 0.89	81.47 ± 0.23	$57.97{\scriptstyle\pm0.44}$
GPS	Permutation	$87.93{\scriptstyle \pm 0.21}$	$92.77{\scriptstyle \pm 0.39}$	$82.46{\scriptstyle \pm 0.33}$	$59.26 \scriptstyle \pm 0.31$
	Rotation	$85.38{\scriptstyle \pm 0.20}$	$91.61 {\pm} 0.49$	$81.50 {\pm} 0.42$	$57.45{\scriptstyle\pm0.33}$
	Blurring	$86.03{\scriptstyle \pm 0.31}$	$91.96{\scriptstyle \pm 0.38}$	$81.49 {\pm} 0.46$	56.85 ± 0.27
ER-Oracle	Offline	$88.26{\scriptstyle \pm 0.15}$	$93.09{\scriptstyle \pm 0.35}$	82.88 ± 0.31	60.56 ± 0.23

Analysis: Simulation Methods

Compared to offline:

- Rotation: too good zero-shot transfer
- Blurring: growing task difficulty
- **Permutation**: bear the **closest** switching point

Analysis: Long Task Sequence

- GPS outperforms baselines even more on longer task sequences.
- Longer task sequence requires more careful memory construction

Method	T = 20	T = 40
ER-Res	$71.25{\scriptstyle \pm 1.07}$	$47.33{\scriptstyle \pm 2.75}$
ER-Ring-Full	$71.92 {\scriptstyle \pm 1.47}$	$49.26{\scriptstyle \pm 2.66}$
ER-Hybrid	$72.27{\scriptstyle\pm0.88}$	$49.63{\scriptstyle \pm 2.61}$
GPS	$74.63{\scriptstyle \pm 0.20}$	$53.57_{\pm 0.63}$
ER-Oracle	$75.21{\scriptstyle \pm 0.17}$	$54.44{\scriptstyle \pm 0.51}$

Extend P-MNIST to longer task sequence

Analysis: Integrate with Advanced ER variants

- GPS integrates well with existing advanced ER variants
- GPS outperforms other non-ER methods

	P-MNIST	TinyImageNet
oEWC	$69.21{\scriptstyle \pm 2.92}$	$20.81{\scriptstyle \pm 0.95}$
iCaRL	-	$38.77{\scriptstyle\pm3.68}$
GSS	$86.34{\scriptstyle \pm 4.28}$	-
A-GEM	$77.36{\scriptstyle \pm 1.28}$	$25.30{\scriptstyle \pm 0.87}$
OGD	81.52 ± 2.21	-
HAL	$87.69{\scriptstyle \pm 0.34}$	_
GPS+HAL	$88.23{\scriptstyle \pm 0.03}$	_
DER++	$91.14 {\pm} 0.22$	60.67 ± 1.08
GPS+DER ++	$91.64 \scriptstyle \pm 0.16$	$61.01{\scriptstyle \pm 0.98}$

Takeaways

Summary

- We explicitly formulate the dynamic memory construction of continual learning w.r.t. the global loss
- Simulation by permutation well approximates the offline switching point
- GPS performs well in the long task sequence of continual learning

Limitation

- Setting: focus on task- and domain-incremental
 - Extend to the class-incremental in the future
- New dataset benchmarks closer to the real world is needed
 - Task sequences having specific zero-shot patterns