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Why should you care?

e Many things run on differential equations
e Lotka-Volterra, fluid dynamics, ...

e For systems of linear homogenuous
ordinary differential equations
with constant coeficients

¢ Developed symbolic and algorithmic
approach to constrain GPs to them

e Realizations of GPs strictly satisty
system of ODESs

e Approach also extracts parameters
from system of ODEs automatically

e Learning parameters together with GPs

e We call them LODE-GPs

Prerequisites & assumptions

e Given a system of ODEs of the form
A-f(t)=0 (1)

e Operator matrix A € R|0;]™*"
e Smooth functions f;(t) € C*°(R,R) of

£(t) = (fi(t) ... fult))

Theorem

For every system as in Equation 1 there
exists a GP g, such that the set of realiza-
tions of g is dense in the set of solutions.

How we did it

U-AV-V1.f=0

& D- V1. f=0
& D-p=0
= mlth Di;i-p;i=0

e Decoupled latent vector p = V~!f of
functions

o GP-prior for h ~ GP(0, k) for p via
multi-output GP
e Pushforward of A with V yields a GP g

The pushforward can be formulated as
g~ Vih =GP0,V k- V')
with V' =

e Zeroes of Ds diagonal entries are used to

construct covariance function k of h
(see table below)

V1 applied on t,.
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The linearized bipendulum

o With acceleration u(t) proportional to
z”(t) we have system of ODEs:

() + 9+ i) — ult) = 0
1)+ 2 - o) - =0

e Which translates to operator matrix A:
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e For rope lengths ¢; # /5 the linearized

Bipendulum (above) is controllable. For
61 — 1, 52 = 2:
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e From D we construct prior cov. tkt. £
with diagonal entries (0, 0, ksg)

s(t = 12)?)

o Where kgg = exp(—

e The LODE-GP kernel is defined by

Vok-V =

28t1+g
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