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Motivation — MCMC and Bayesian ML

I We want to compute the Bayesian posterior predictive distribution P(y |x,D).
I Given a parameteric family of models P(y, x |θ), we can decompose this

problem into the integral

P(y |x,D) =
ˆ

P(y |x, θ)P(θ |D)

I However, this integral is generally intractable so we approximate it with
samples θi ∼ P(θ |D) i.e.

P(y |x,D) =
ˆ

P(y |x, θ)P(θ |D) ≈
1

N

N∑
i=1

P(y |x, θi)

I However, generating exact samples θi is also intractable so we can use a
Markov kernel T with invariant measure P(θ |D) to generate independent
Markov chains θin+1 ∼ T(θ

i
n, •) and approximate

P(y |x,D) =
ˆ

P(y |x, θ)P(θ |D) ≈
1

N

N∑
i=1

P(y |x, θi) ≈
1

N

N∑
i=1

P(y |x, θinsim
)

I This procedure is Markov Chain Monte Carlo (MCMC). The central question
of our work: how do we pick a good transition kernel?
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Nonlinear MCMC — Mean Field System

I To specify a MCMC algorithm, we need a Markov transition kernel

I Our work directly builds on the paper Andrieu et al., 2011 with some
important differences & extensions

I Consider a family of kernels indexed by probability measures η ∈ P(Rd)

Kη(x, dy) := (1 − ε)K(x, dy) + εJη(x, dy)
I K is a linear Markov kernel, called the primary kernel, and
I Jη is a family of nonlinear “jump interaction” Markov kernels
I ε ∈]0, 1[ is a mixture hyperparameter

I Let Q be a linear Markov kernel called the auxiliary kernel
I We can construct a nonlinear Markov chain {(Xn,Yn)}∞n=0 from Kη as follows

Yn+1 ∼ Q(Yn, •)
ηn+1 := Distribution(Yn+1)
Xn+1 ∼ Kηn+1 (Xn, •)

Y0 ∼ η0, X0 ∼ µ0 (1)

I We pick Q to be η?-invariant, K, Jη? to be π-invariant
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Nonlinear MCMC — Interacting Particle System
I However equation (1) can’t be directly simulated due to Distribution(Yn)

I We can approximate Distribution(Yn) in the mean field system (1) using a set
of particles Yn := {Y1

n , . . . ,Y
N
n } with the empirical measure

Distribution(Yn) ≈ m(Yn) :=
1

N

N∑
i=1

δY i
n

I Hence we get the interacting particle system which we will simulate to obtain
MCMC estimates

Y i
n+1 ∼ Q(Y i

n, •)

ηNn+1 := m(Yn+1)

X i
n+1 ∼ KηN

n+1
(X i

n, •)

Y i
0

iid
∼ η0, X i

0
iid
∼ µ0, i = 1, . . . , N . (2)
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Specific Nonlinear Interactions
I We need to make choices for nonlinear “jump” interactions Jη . We use two

proposals in Andrieu et al., 2011

I Define the potential function G(x) := π(x)
η?(x)

I Boltzmann-Gibbs transformation

JBGη (x, dy) = ΨG(η)(dy); ΨG(η)(dy) =
G(y)
η(G)

η(dy)

I This uses G to re-weight the distribution η
I If η = m({Y1, . . . ,YN }), then this amounts to using a softmax over the

log-potentials of each particle:

ΨG (m(Y)) =

N∑
i=1

G(Y i )∑N
j=1 G(Y

j )
δY i

I Accept-Reject Interaction

JAR
η (x, dy) = α(x, y)η(dy)︸         ︷︷         ︸

accept

+

(
1 −

ˆ
α(x, y)η(dy)

)
δx(dy)︸                                ︷︷                                ︸

reject

; α(x, y) := 1 ∧
G(y)
G(x)

I This is an “adaptive Metropolis-Hastings” where the proposal distribution is η

I π is Jη? -invariant for each of these choices
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Convergence Notions For Nonlinear MCMC

I We denote:
I µn := Distribution(Xn), i.e. the distribution of the mean-field system (1)
I µN

n := Distribution(X1
n), i.e. the distribution of one particle from the interacting

particle system (2) (it doesn’t matter which particle)

I Two different phenomena to characterize convergence of nonlinear MCMC
1. Long-time convergence: Does ‖µn − π ‖ → 0 and, if so, at what rate?

2. Propagation of Chaos: Do groups of dependent particles become independent
as N →∞?

Long-time Convergence Propagation of Chaos
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Main Theorem

Theorem 1 (Convergence of Nonlinear MCMC)

Under suitable conditions on Kη and Q, there exist fixed constants
C1,C2,C3 > 0, a function R : [0,∞[→ [1,∞[, and ρ > 0 s.t.

‖µNn − π‖tv ≤ C1
1

N
R(1/N) + C2ρ

n + C3nρn .

I Theorem 1 says it’s not sufficient to only let n→∞ to ensure µn → π

I It’s easy to come up with cases where for any N > 0, π is not K
m(Yn)

-invariant
for any n. Hence having N →∞ is also necessary (at least in general)

Corollary 2 (Adapted from Sznitman, 1991, Theorem 2.2)

Suppose that Theorem 1 applies to Kη . Let Xn := {X1
n, . . . , XN

n } be the
interacting particle system from (2). Then for every n ∈ N and f ∈ Bb(Rd) we
have

lim
N→∞

E

[����� 1N N∑
i=1

f (X i
n) − µn( f )

�����
]
= 0.
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Proof Sketch — Triangle Inequality
Main ingredients of proof:

1. Ergodicity of K,Q

2. “Regularity” of η 7→ Jη
3. Use the triangle inequality as follows:

‖µNn − π‖ ≤ ‖µNn − µn‖︸        ︷︷        ︸
propagation of chaos

+ ‖µn − π‖︸     ︷︷     ︸
long-time convergence

.
1

N
R

(
1

N

)
+ ρn + nρn
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Proof Sketch — Lipschitz Regularity of J

I We use Lipschitz regularity of J to ensure that as ηn → η?, Jηn → Jη?

‖Jη − Jη′ ‖ . ‖η − η′‖ η, η′ ∈ P(Rd)

I This ensures that Kηn → Kη?

I Note: the LHS norm and the RHS norms are different – one is over kernels,
the other is over probability measures
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Proof Sketch — LLN Regularity of J
I We use particles Y := (Y1, . . . ,YN ) to empirically approximate a measure
η ∈ P(Rd) by η ≈ m(Y ) = 1

N

∑N
i=1 δY i

I As N →∞, various LLN (or CLT) results tell us m(Y ) → η

I We want this same “LLN” regularity of the nonlinear interaction Jη , i.e. as
N →∞, we want J

m(Y)
→ Jη

I Additional considerations:
I The convergence should not depend on which η ∈ P(Rd ) we’re approximating
I Since Y is random Jm(Y) is a random kernel which is hard to work with. To

simplify, we mean convergence in a suitable expectation sense:

E[Jm(Y ) f (x)] → Jη f (x) ∀x ∈ Rd, f in a suitable set of functions
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Experiments — 2-dimensional (Circular Mog1)

Target
Density

Ground Truth Linear
(MALA)

Nonlinear
(AR)

Nonlinear
(BG)

1Density from Stimper, Schölkopf, and Hernández-Lobato, 2022
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Experiments — 2-dimensional (Two Rings2)

Target
Density

Ground Truth Linear
(MALA)

Nonlinear
(AR)

Nonlinear
(BG)

2Density from Stimper, Schölkopf, and Hernández-Lobato, 2022
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Experiments — 2-dimensional (Grid Mog3)

Target
Density

Ground Truth Linear
(MALA)

Nonlinear
(AR)

Nonlinear
(BG)

3Density from Zhang et al., 2019
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Experiments — 2-dimensional

Accept-Reject Boltzmann-Gibbs
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Experiments — 2-dimensional

I As predicted by Theorem 1, the nonlinear MCMC convergence rate depends
substantially on the choice of N (left)

I This is not true for the linear MCMC convergence rate, which only reduces
variance by increasing N (right)
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Experiments — ResNet18 on CIFAR10

I Setup:
I Likelihood is P(y |x, θ) is ResNet-18 (He

et al., 2016)
I Prior is P(θ) is N(0, 10−4I )
I Auxiliary target density is

η?(θ) ∝ P(θ |D)1/τ1

I Target density is π(θ) ∝ P(θ |D)1/τ2

I Auxiliary kernel Q is RMS-ULA,
I Primary kernel K is ULA,
I Minibatch size is 256

Test Accuracy (↑)
Expected Calibration

Error (↓)
Algorithm Tempered Tempered
Linear 85.01±0.19 0.26±0.014

Nonlinear (BG) 84.74±0.08 0.16±0.03
Nonlinear (AR) 84.67±0.23 0.15±0.05
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Conclusion

I What did we do?
1. We analyzed the convergence of a variation on the family of nonlinear Markov

chain Monte Carlo methods proposed in Andrieu et al., 2011

2. Our proof decomposes into two separate results on long-time and large-particle
convergence

3. We also applied our theory to two specific choices of samplers also introduced in
Andrieu et al., 2011

4. We did some experiments 2-dimensional experiments that demonstrate superior
performance provided one can choose η? properly

5. We did some large-scale experiments on CIFAR10 that show our methods are
feasible and comparable but not better than the linear methods on CIFAR10

I What’s next?
1. Investigate how to choose η? better in high dimension (e.g. for neural networks)

2. Expand to more high-dimensional settings and develop better recipes for MCMC
in Bayesian ML

Thank you!
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