

Pre-activation Distributions Expose Backdoor Neurons

Runkai Zheng^{1*}, Rongjun Tang^{1*}, Jianze Li^{1,2}, Li Liu^{1,2}[†]

¹The Chinese University of Hong Kong, Shenzhen ²Shenzhen Research Institute of Big Data

*Equal Contribution †Corresponding Author

Backdoor Attack

Backdoor Defense

Goals:

- Mitigate the effect of trigger.
- Maintain normal performance on benign samples.

Defense by pruning:

- Find the (potential) backdoor neurons.
- Set their weights to zero to remove the backdoor.

Preliminary: Pre-activation Distribution

Consider a neural network $F(x; \theta)$ (also write as $F^{(l)}$) with L layers, denote:

$$F^{(l)} = f^{(l)} \circ \varphi \circ f^{(l-1)} \circ \cdots \circ \varphi \circ f^{(1)}$$

for $1 \le l \le L$, where $f^{(l)}$ is a linear function in l_{th} layer and φ is a non-linear activation function.

We denote $x^{(l)} = F^{(l)}(x) \in \mathbb{R}^{d_c^{(l)} \times d_h^{(l)} \times d_w^{(l)}}$ as the output of the l_{th} layer.

For the k_{th} neuron, the pre-activation $\phi_k^{(l)} = \phi(x_k^{(l)})$ is defined as the maximum value of the k_{th} slice matrix of $x^{(l)}$.

Motivation

Benign neuron

Backdoor neuron

Previous research:

The existence of backdoor-related neurons.

Our empirical observation:

Two Gaussian-like pre-activation distributions with significant different moments formed by benign samples and poisoned samples, respectively.

Main Assumption: Gaussian Mixture Distribution

Assume that in backdoor neurons, the pre-activation distribution follows a mixture of two different Gaussians; while in the benign neurons, the difference between distributions formed by benign and poisoned samples can be omitted:

$$\phi_k^{(l)} \sim (1-\rho) \mathcal{N}\left(\mu_k^{(l)}, \sigma_k^{(l)2}\right) + \rho \, \mathcal{N}\left(\hat{\mu}_k^{(l)}, \hat{\sigma}_k^{(l)2}\right)$$

Proposed Methods: Entropy-based Pruning (EP)

Proposed Methods: BN statistics-based Pruning (BNP)

Characteristic of **backdoor neurons**

Proposed Methods: BN statistics-based Pruning (BNP)

We calculate the KL divergence (under Gaussian assumption) between the distribution approximated by benign sample's statistics and the BN induced distribution to identify the backdoor neurons:

$$D_{KL}\left(\boldsymbol{\mathcal{N}}_{samlple}^{(l)}, \boldsymbol{\mathcal{N}}_{BN}^{(l)}\right)_{\boldsymbol{k}} > D_{KL}\left(\boldsymbol{\mathcal{N}}_{sample}^{(l)}, \boldsymbol{\mathcal{N}}_{BN}^{(l)}\right)_{\boldsymbol{k}'} = \boldsymbol{0}$$

The equality holds when our assumption on the Gaussian mixture distribution holds.

Summary on Pruning Strategy

- 1. If we have access to the poisoned dataset:
 - Calculate the standardized pre-activation differential entropy for every neuron, and let h^(l) = [h(φ₁^(l)), h(φ₂^(l)), ..., h(φ_{d_c^(l)})]^T.
 Set τ_h^(l) = h^(l) - u_h · s_h^(l), and prune the neurons with differential entropy less than τ_h^(l).
- 2. If we have access to a benign dataset:
 - Calculate the KL divergence between benign sample distribution and BN induced distribution

$$K_k^{(l)} = D_{KL} \left(\mathcal{N}_{samlple}^{(l)}, \mathcal{N}_{BN}^{(l)} \right)_k \text{ for every neuron, and let } K^{(l)} = \left[K_1^{(l)}, K_2^{(l)}, \dots, K_{d_c^{(l)}}^{(l)} \right]^T.$$

• Set $\tau_K^{(l)} = \overline{K}^{(l)} + u_K \cdot s_K^{(l)}$, and prune the neurons with KL divergence larger than $\tau_K^{(l)}$.

Here u_h/u_K are the only hyperparameter in our methods, and we set it to 3 as default.

Quantitative Results

CIFAR-10

	BadNets (A2O)		BadNets (A2A)		CI	CLA		WaNet		Blended		Refool		B
Attacks	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
Origin	93.86	100.00	94.60	93.89	94.99	98.83	94.11	99.67	94.17	99.62	94.24	98.40	93.87	97.91
FT	92.22	2.16	92.03	60.76	92.88	95.73	92.93	9.37	93.9	90.27	91.68	17.78	91.78	9.52
FP	92.18	2.97	91.75	66.82	92.60	99.36	92.07	1.03	70.92	90.92	92.36	75.98	87.04	16.13
l_{∞}	92.12	100.00	93.67	6.67	92.75	98.76	93.48	99.74	86.99	99.77	91.19	98.47	88.37	88.48
NAD	93.36	2.43	92.18	2.06	91.36	15.31	93.08	3.05	92.72	1.61	91.64	6.74	92.11	19.45
ANP	93.47	3.53	90.29	86.22	91.13	11.76	94.12	0.51	93.66	5.03	91.71	26.96	93.52	10.61
EP (Ours)	93.88	0.86	94.49	0.61	94.42	0.91	93.79	2.80	93.67	2.24	93.35	8.90	93.17	0.94
BNP (Ours)	93.60	1.60	94.25	0.72	94.14	7.03	94.05	3.39	94.17	2.71	93.69	6.48	93.15	0.64

Tiny-ImageNet

	BadNets (A2O)		CLA		Wa	WaNet		Refool		Blended		IAB		BA
Attacks	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
Origin	61.36	97.38	65.61	56.58	61.47	99.98	53.26	80.61	62.85	99.83	61.40	98.28	66.51	99.78
FT	46.93	99.84	61.19	63.20	54.28	99.96	47.09	91.77	56.83	29.12	52.39	99.1	52.39	33.19
FP	35.41	99.48	62.30	39.05	53.65	100.00	42.10	86.62	59.59	99.76	52.67	98.47	53.36	31.96
l_{∞}	53.13	90.39	59.15	23.12	42.01	99.84	46.84	81.19	56.33	99.85	54.81	86.97	49.35	99.98
NAD	44.20	90.13	62.80	17.35	53.40	99.98	51.06	70.63	57.35	55.6	53.32	98.85	52.52	25.08
ANP	53.85	4.02	59.69	3.64	54.82	86.98	50.67	0.21	62.49	0.61	61.39	4.67	60.98	1.01
EP (Ours)	60.68	0.86	64.47	0.10	60.53	0.02	51.29	17.07	60.67	0.69	61.26	0.60	64.2	0.11
BNP (Ours)	61.60	1.60	64.86	0.05	61.58	0.01	52.41	23.79	60.77	0.85	61.30	0.60	64.64	0.01

Quantitative Results

Running time evaluation: tested on a single RTX 2080Ti GPU

Defense Method	FT	FP	NAD	ANP	EP (ours)	BNP (ours)
Runing Time (sec.)	12.35s	14.59s	22.08s	25.68s	10.69s	0.39 s

Evaluation on samples used for BNP

Even with 10 samples, BNP can successfully capture the difference between the two distributions and locate the backdoor neurons.

Ablation Studies

Varying Threshold Hyperparameter *u*

(h) SSBA (TinyImageNet)

Ablation Studies

Varying Poisoning Rate

Dataset: CIFAR-10

Network: ResNet-18

		BadNets (A2O)		BadNets (A2A)		CLA		WaNet		Blended		Refool		IAB	
ρ	Stage	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
1%	Origin	95.03	99.94	94.75	88.57	88.96	4.73	94.76	46.82	94.17	99.62	93.08	99.59	93.22	64.00
	EP	94.82	0.91	94.17	0.73	87.96	0.65	93.67	14.17	94.46	2.29	91.77	24.08	92.73	5.21
	BNP	92.22	2.16	93.16	7.99	88.03	0.84	94.64	1.24	92.89	2.44	90.99	21.22	93.17	4.19
	Origin	94.29	99.99	94.26	92.78	95.53	92.23	94.00	94.55	94.53	81.33	94.35	97.98	92.70	65.50
5%	EP	93.83	0.83	93.67	0.70	94.43	15.91	92.73	10.13	94.44	5.49	92.75	4.51	92.29	1.83
	BNP	93.61	0.67	93.99	5.64	94.65	12.06	94.17	1.78	93.37	9.21	92.30	2.08	92.74	2.14
10%	Origin	93.89	100.00	94.60	93.89	94.99	98.83	94.11	99.67	94.17	99.63	94.24	98.40	93.87	97.91
	EP	93.88	0.86	94.49	0.61	94.42	0.91	93.79	2.80	93.67	2.24	93.35	8.90	93.17	0.94
	BNP	93.60	1.60	94.25	0.72	94.14	7.03	94.05	3.39	94.17	2.71	93.69	6.48	93.15	0.64

Ablation Studies

Pruning Sensitivity: Are We Pruning the Backdoor Neurons?

Summary

We find:

In the backdoor neurons, the discrepancy between distributions formed by benign samples and poisoned samples is obviously larger than that in the benign neurons.

We Propose:

Entropy-based Pruning (EP)

• With poisoned dataset.

BN Statistics-based Pruning (BNP)

• With benign dataset.

Good Performance; High Efficiency; Robust to Hyperparameter.

Thank You!

Pre-activation Distributions Expose Backdoor Neurons