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CNN Approximation

Figure: Approximation, Estimation and Optimization.
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What’s New

Table: A comparison of some recent CNN approximation results.

Network Target function Flexible filter length Explicit prefactor Low-dimensional Result

[7] CNN FNN % % %

[6] ConvResNet FNN ! % %

[9] CNN Sobolev ! % %

[4] CNN Hölder % % !

[5] ConvResNet Besov ! % !

This paper CNN Sobolev and Hölder ! ! !
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Convolutional neural networks

A CNN fCNN : X → R with L hidden layers:

fCNN(x) = AL+1 ◦ AL ◦ · · · ◦ A2 ◦ A1(x)

Convolutional layers:
1 Ai (x) = σ(W c

i x + bc
i ) with ReLU activation σ.

2 Sparse Toeplitz weight matrix W c
i ∈ Rdi×di−1 induced by

3 Convolutional filters {w (i)
j }s

(i)

j=0 with filter length s(i) ∈ N+.
4 Bias vector bc

i ∈ Rdi .

Downsampling layers

1 Ai (x) = Di (x) = (xjmi )
⌊di−1/mi⌋
j=1 for any x ∈ Rdi−1 .

2 Max Pooling, Average Pooling.
3 Scaling parameter mi ≤ di−1.

Class of CNNs FCNN = {fCNN over all possible choice of {Ai}L+1
i=1 }.

1 Total number of parameters S for networks in FCNN

2 Min. and max. filter length smin and smax over convolutional layers
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Approximation in Sobolev space

Theorem 1 (Approximation on functions in Sobolev Space)

Assume f ∈ W β,p(X ) with 1 ≤ β ∈ N0, 1 ≤ p ≤ ∞ and ∥f ∥Wβ,p(X ) ≤ B0. For

any M,N ∈ N+, and for m = 0, 1, there exists a function fCNN ∈ FCNN with

L ≤ 42(⌊β⌋+ 1)2M⌈log2(8M)⌉⌈ W − 1

smin − 1
⌉, 2 ≤ smin ≤ smax ≤ W, S ≤ 8WL,

W = 382(⌊β⌋+ 1)4d2⌊β⌋+2N2⌈log2(8N)⌉2,

such that ∥f − fCNN∥Wm,p(X ) ≤ C0(d , β, p)(NM)−2(β−m)/d

where C0(d , β, p) = 37 · 22β+2d/pB2
0 (β + 1)3 × {π−d/2Γ(d/2 + 1)}2/p+1(1 + 2

√
d)dd4β .

Sobolev class of functions

W β,p(X ) = {f ∈ Lp(X ) : Dαf ∈ Lp(X ) for all α ∈ Nd
0 with ∥α∥1 ≤ β}.

1 For 1 ≤ p <∞ define ∥f ∥Wm,p(X ) :=
(∑

0≤∥α∥1≤m ∥Dαf ∥pLp(X )

)1/p
.

2 Define ∥f ∥Wm,∞(X ) := max0≤∥α∥1≤m ∥Dαf ∥L∞(X ).
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Approximation with a lower-dimensional support

Assumption 1 (Approximate Manifolds)

The distribution of X is supported on Mρ, a ρ-neighborhood of M ⊂ X , where M is a
compact dM-dimensional Riemannian submanifold and
Mρ = {x ∈ X : inf{∥x − y∥2 : y ∈ M} ≤ ρ} for ρ ∈ (0, 1).

Theorem 2 (Improved CNN Approximation)

Suppose Assumption 1 holds, f ∈ W β,∞(X ) and the distribution of X is absolutely
continuous w.r.t the Lebesgue measure. For ε ∈ (0, 1), let

dε = O(dMε−2 log(d/ε)), ρε = C2
(NM)−2β/dε(β + 1)2

√
dd

3β/2
ε

[
√

d/dε + 1− ε](1− ε)β−1
.

Then, for any M,N ∈ N+, there exists a CNN fCNN ∈ FCNN with L, S specified in
Theorem 1 with W = 382(⌊β⌋+ 1)4dε

2⌊β⌋+2N2⌈log2(8N)⌉2 such that

E|f (X )− fCNN(X )| ≤ C(d , β)(NM)−2β/dε ,

for ρ ≤ ρε where C(d , β) = (18 + C2)B0(1− ε)−β(β + 1)2d1/2d
3β/2
ε .
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A Toy Example
Target function: f0(x) = 2 sin(2πx1) + 4(x2)

3, x ∈ [0, 1]2.

Table: Approximation errors by CNNs with different filter lengths and depths.

Approximation error Filter length
−→

L1(L2) 20 50 100 200

Hidden layers ↓
1 0.807(0.969) 0.450(0.539) 0.139(0.186) 0.062(0.084)

2 0.112(0.144) 0.055(0.070) 0.047(0.064) 0.025(0.037)

3 0.078(0.098) 0.051(0.070) 0.037(0.046) 0.032(0.045)
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A Toy Example

Figure: Heatmaps for the CNN approximations on the target function. The CNNs are
designated with depth L = 1, 2, 3 and filter length s = 20, 50, 100, 200.
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Application to binary classifications

Sample {(Xi ,Yi )}ni=1 from (X ,Y ) with X ∈ Rd and Y ∈ {1,−1}.

Use Surrogate loss functions for 0-1 loss (or Misclassification loss).

Given convex loss ϕ : R → [0,∞). Risk R(f ) := Eϕ(Yf (X )).

1 Risk minimizer
f0 := arg min

f measurable
Eϕ(Yf (X )).

2 Empirical risk minimizer

f̂n ∈ arg min
f∈FCNN

1

n

n∑
i=1

ϕ(Yi f (Xi )). (1)

3 The classifier ĥn(x) := sign(f̂n(x)) and h0(x) := sign(f0(x)).
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Application to binary classifications

Self-calibration [7]:

ψ(P(ĥn(X ) ̸= Y )− P(h0(X ) ̸= Y )) ≤ R(f̂n)− R(f0).

Focus on the excess risk: R(f̂n)− R(f0).

Table: Surrogate loss, minimizer and self-calibration ψ.

ϕ(a) f0(x) ψ(θ) ψ−1(θ)

Least squares (1− a)2 2η − 1 θ2
√
θ

SVM max{1− a, 0} sign(2η − 1) |θ| |θ|
Exponential exp(−a) 1

2 log(
η

1−η ) 1−
√
1− θ2

√
1− (1− θ)2

Logistic log{1 + exp(−a)} log( η
1−η ) θ2

√
θ

Cross entropy − log{0.5 + a} η − 0.5 θ2
√
θ

Note: η(x) = P(Y = 1|X = x).
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Application to binary classifications

Theorem 3 (Non-asymptotic excess ϕ-risk bound)

Suppose f0 ∈ W β,∞([0, 1]d ,B0) For any M,N ∈ N+, let depth L and filter lengths of
FCNN specified as in Theorem 1. Under mild conditions , for any δ ∈ (0, 1), with
probability ≥ 1− δ, the ERM f̂n defined in (1) satisfies

R(f̂n)− R(f0) ≤
2ϕB√

n

(
C0

√
SL log(S) log(n) +

√
log(1/δ)

)
(2)

+ C(d , β)(NM)−2β/d +∆ϕ(T ). (3)

where C(d , β) = 18BϕB0(β + 1)2dβ+(β∨1)/2, C0 > 0 is a universal constant, and
truncation error ∆ϕ(T ) := inf|a|≤T ϕ(a)− infa∈Ran(f0) ϕ(a) where Ran(f0) is the range of
f0. Additionally, if conditions in Theorem 2 holds, the approximation error (3) is
improved to be C(d , β)(NM)−2β/dϵ +∆ϕ(T ) where dϵ is defined in Theorem 2.
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Application to binary classifications

Table: Excess Misclassification Error

Hypothesis space Loss Condition Rate Reference

Measurable

functions

0-1

loss
θ-noise condition;

α-Hölder decision boundary
n
− β(θ+1)
β(θ+2)+(d−1)θ Theorem 1 in [8]

DNN Hinge n
− β(θ+1)
β(θ+2)+(d−1)(θ+1) Theorem 1 in [3]

Deep CNNs

1-norm
f0 ∈ W β,p(Sd−1)

n
− β
β(2−τ)+2γ(d−1)

Theorem 2 in [2]

p-norm n−
pβ

2pβ(2−τ)+2p(γ+1)(d−1)

2-norm
f0 ∈ W β,p(Sd−1);
θ-noise condition;

n
− 2βθ

(2+θ)((γ+1)(d−1)+2β) Theorem 3 in [2]

Hinge
θ-noise condition;
f0 ∈ W β,p([0, 1]d)

n−
β(θ+1)

d+2β(θ+1)

This paperLogistic f0 ∈ W β,p([0, 1]d) n−
β

2d+4β

Exponential f0 ∈ W β,p([0, 1]d) n−
β

2d+4β

Least square f0 ∈ W β,p([0, 1]d) n−
4β

3d+16β

The p-norm hinge loss: ϕ(u) = max{1− u, 0}p with p ≥ 1 (it is hinge loss when p = 1).
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Thank you!
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