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Background

* Lyapunov Method in Machine Learning: The recent work (Chang et
al. ,2019) proposed an neural framework of learning the Lyapunov
function and the linear control function simultaneously for stabilizing
ODEs. The noise is ubiquitous in the real world systems, which calls for
control methods in stochastic settings.

* Stochastic Stability Theory of SDEs: The positive effects of stochasticity
have also been cultivated in control fields for SDEs. It inspires us to
cultivate control method for SDEs with the help of noise, instead of
focusing on deterministic control and regard noise as negative part.

* Classic control methods: Existing control methods for SDEs just use the
hard constrained optimization to find online deterministic control and
lack the exponential stability, we focus on learning offline neural
stochastic control policy with stability guarantee.



Problem Statement

dz(t) = F(x(t))dt + G(x(t))dB;, t >0, x(0) =z, € R?

we set F(0) = 0 and G(0) = 0 so that x = 0 is a zero solution

Assumption 2.1 (Locally Lipschitzian Continuity) For every integer n = 1, there is a number
K, > 0 such that

|F(z) = F(y)|| < Kallz =yl [6(z) = G(y)lr < Kallz —yl|.

for any x,y € R with ||| V |ly|| <n. 5 Existence and uniqueness

How to stabilize the zero solution with the only diffusion term?



Fundamental Theory

Exponential Stability

Theorem 2.2 Mao (2007) Suppose that Assumptions|2. [|holds. Suppose further that there exist a
function Ve C*(R*; Ry ) with V(0) = 0, constants p > 0, ¢1 > 0, co € R and c5 > 0, such that (i)
cilx||P < Vix), (i) LV (z) < eV (x), and (iii) [VV T (2)G(z)|? > sV () for all 2 # 0 and
t > 0. Then,

1 3 — 2c
limsup — log ||x(t; tg, xp)|| < _87 92 s (2)
t—oo 1 2p

In particular, if cs — 2c9 > 0, the zero solution of Eq. (1) is exponentially stable almost surely.

Asymptotic Stability

Theorem 2.3 Appleby et al.| (2008) Suppose that Assumptions |2.1| holds.  Suppose further
min| . =n ||@ ' G(x)|| > 0 for any M > 0 and there exists a number o € (0, 1) such that

|2 (2(z, F(2)) + |G(2)||p) — (2 — o)z G(x)|* <0, VxeR™. (3)

Then, the unique and global solution of Eq. (1) satisfies lim;_, . @(t, xg) = 0 a.s., and we call this
property as asymptotic attractiveness.



Overall Workflow
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ES:Construction of VV

Input convex neural network (ICNN)

A O'.[}([-’][’T[}ZB -+ b(}), <i+1 — Ji(LTiZf_ -+ H;:B -+ b;),
Q(ZII) Zks Ezquk—lq

V(z) = oxt1(g(F(x)) — g(F(0))) + <lz||.

a(z) o'(z) a"(x)

r 0? if x S 0? . :

o) = ¢ (2da® — 2%) /243, if0 <z < d, [/ ‘/_ V\
L d/2 otherwise Figure 2: The smoothed ReLU o(-).
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Amos, B., Xu, L., and Kolter, J. Z. Input convex neural networks. In International
Conference on Machine Learning, pp. 146—-155. PMLR, 2017.




ES:Construction of V, u

Quadratic Form

Viz)=a' [e] + Vo(z) Vo(x)] x,

where Vy is parameterized by some multilayered neural
network (NN), € > 0 is a hyperparameter.

Control functions.t. u(0) = 0

u(x) = NN(x) — NN(0) or u(x) = diag(x)NN(x)




ES: Loss function

We can extract the following sufficient
condition for exponential stability

(VV(2)' gu(®))® ) LV (x)
V(z)? V(z)

>0, b>2, x#0.

The loss can be defined as

1 (0.2:2012) _ (V@) gula))

V(x;) V(x;)?




AS: Loss function

Under the similar structure for controller , we define the loss
function from the sufficient condition of asymptotic stability as

N

S [max (0, (0 = 2) ] gu(a) |2 + 2l (s, £(20)) + o) )]

1=1

1

a is an adjustable parameter, which is related to the convergence
time and the energy cost using the controller u




Convergence time and energy cost

We define the convergence time of the system under neural
stochastic controller as the following stopping time

e = inf{t > 0 [lz()] = }

¢ is some predefined threshold value

The energy consumed in the control process until the stopping

time is defined as
T NT e T,
E(r.T)2E / ||'u,2df] _E / u||211{t<,,€}dt]
0 0




Theoretical upper bounds

Theorem 4.2 (Estimation for ES) For ES stabilizer u(z) in (14) with (z, f(x)) < L||z|]*, ¢

2.2|with ¢35 — 2(32 > (), we have

( 2log (V P
E[Te} g .TE — Og( (mO)/Clg )
< Cg — QCQ
k|| 20 (kn? + 2L) log (V . P
£(r..T,) < FullZoll® [eXp( (ku® + 2L) log (V (o) /1 ))) ) 1]‘

Theorem 4.3 (Estimation for AS) For (14) with (x, f(x)) < L|z|? ¢ , under
the same notations and conditions in Theorem 2.3 if the left term in further satisfies

maxg) < 2] 4([22(2(x, f(2) + |u(@)[3) — (2 - o)llzT u(@)[2) = ~5. < 0, then for
NN controller w(a) with Lipschizt constant £, we have
( 2 ([|zol|* = =)
Elr] <T. = ,
< 7] < 5 o
ke || 0|2 2(ky” + 2L > g
£, < Ml [exf’ (242D " ) 1] |
\ ko  + 2L e - @
E A . . o
%; Hyperparameters b = 2—3, a can be adjusted according to the estimation !
2



Results: Harmonic Linear Oscillator

Stabilize unstable zero solution in the original SDE with ES&AS

Original system Controlled system
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3;' AS 4.839s 184 0.027 2.027




Results: Model free and pinning control

For 6-D Cell Fate Dynamics x = (x4, **, X5), we combine the NODE
method to learn the original dynamic from data and then find pinning
control, i.e. we only control x, to stabilize the unstable state.
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