Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution

Quanliang Wu, Huajun Liu

School of Computer Science, Wuhan University {quanliangwu, huajunliu}@whu.edu.cn NeurIPS 2022

Semantic Segmentation in Unsupervised Domain Adaptation

Source images with annotations

Target imagesPredicted annotations

Autonomous driving

Application

Image editing

Related Work

SPIGAN [ICLR 2019] *Plain way*

Using Depth to bridge domain gap

DADA [ICCV 2019] *Plain way*

CTRL [CVPR 2021] discrete depth levels Lacking a more detailed quantitative description of depth information

CorDA [ICCV 2021] Obtain/generate depth in advance

Use the Gaussian mixture models to build the depth distribution for different semantic classes.

Our Framework

We use standard multi-task learning framework to obtain three sub-tasks, i.e. semantic segmentation, depth regression, and **depth distribution density estimation**.

We explore pixel aggregation priors of different classes on the source domain to help refine the pseudo-labels on the target domain for self-supervised training.

Our Loss Function

Semantics prediction

Depth regression

Density estimation

 $\mathcal{L}_{seg}(\hat{P}, P) = -\sum_{i=1}^{C} P_i \log \hat{P}_i$

$$\mathcal{L}_{dep}(\hat{Z}, Z) = berHu\left(\hat{Z} - Z\right)$$

branch balance loss

$$\mathcal{L}_{bal}(\hat{D}, D) = berHu\left(\hat{D} - D\right)$$

Density values of each pixel can be calculated by

$$p\left(\vec{X_i}\right) = \sum_{j=1}^{K} \phi_{ij} \mathcal{N}\left(\vec{X_i} \mid \vec{\mu_{ij}}, \Sigma_{ij}\right)$$

Source domain training, ground truth depth, the predicted segmentation map and pre-constructed source domain GMMs to generate *Ds.*

Target domain training, estimated depth, the predicted segmentation map and pre-constructed source domain GMMs to generate *Dt.*

Our Loss Function

$$\min_{\theta_{net}} \mathbb{E}_{\mathfrak{D}^{(s)}} \left(\lambda_{seg} \mathcal{L}_{seg} + \lambda_{dep} \mathcal{L}_{dep} + \lambda_{bal} \mathcal{L}_{bal} \right),$$

$$\min_{\theta_{net}} \mathbb{E}_{\mathfrak{D}^{(t)}} \left(\lambda_{tar} \mathcal{L}_{bal} \right),$$

Adversarial Training

$$\min_{\theta_{\mathcal{D}}} \left\{ \mathbb{E}_{\mathfrak{D}_{s}} \left[\log \mathcal{D} \left(\hat{F}_{s} \right) \right] + \mathbb{E}_{\mathfrak{D}_{t}} \left[\log \left(1 - \mathcal{D} \left(\hat{F}_{t} \right) \right) \right] \right\}$$
$$\min_{\theta_{max}} \mathbb{E}_{\mathfrak{D}_{t}} \left[\log \mathcal{D} \left(\hat{F}_{t} \right) \right]$$

Hyper parameter

$$\lambda_{seg} = 1.0, \, \lambda_{dep} = 0.5 \, \times 10^{-2} \, , \, \lambda_{bal} = 10^{-2} \, , \, \lambda_{tar} = 5 \, \times \, 10^{-2} \, , \, \lambda_{adv} = 5 \, \times \, 10^{-2} \,$$

Spatial Aggregation Priors for Pseudo-labels Refinement

Pixels of large objects, such as sky and road, have a large-scale aggregation in image space, while pixels of small objects, such as person and bicycle, have relatively small-scale aggregation in image space.

$$thres_i = N_{base0} + \frac{N_i - N_{min}}{N_{max} - N_{min}} \times N_{base1}$$

Algorithm 1: Spatial prior pseudo-labels refinement algorithm
Input: A target sample with predicted pseudo-labels.
Output: Refined pseudo-labels.
1 Initialize all pixels to set their flags $T_{wh}=0$.
2 for $w=0$ to W do
3 for $h=0$ to H do
4 if $T_{wh}=0$ && $Confidence_{wh} \ge 0.9$ then
5 Search around it for pixels that satisfy the following conditions:
6 Their prediction class is the same as T_{wh} , and their confidence value ≥ 0.9 .
7 Iterate over taking these points as the fiducial points and search around them outward for the qualified points.
8 Count the number of all qualified pixels, and record as N_c ;
9 if $N_c \ge thres_i$ then
10 Set flags of all these pixels to 1;
11 Pixels labeled with 1 are reserved, and their pseudo-labels can be used for self-supervised learning.

UDA Benchmarks

SYNTHIA \rightarrow Cityscapes (16 classes), SYNTHIA \rightarrow Cityscapes (7 classes), and SYNTHIA \rightarrow Mapillary (7 classes).

"mean Intersection over Union" (mIoU in %) on the 16 classes the mIoU (%) of the 13 classes (mIoU*) excluding classes with *

Experimental Setup a single NVIDIA 1080Ti GPU, PyTorch, ResNet-101, Atrous Spatial Pyramid Pooling (ASPP), DC-GAN

Learning rates of the prediction and discriminator networks are set as $2.5 \times 10-4$ and $1.0 \times 10-3$ respectively. In self-training, the parameters are: Q1 = 54*K*, Q2 = 30*K*.

Models	Depth	road	sidewalk	building	Wa]]*	fence*	pole*	light	sign	Veg	sky	person	rider	car	bus	mbike	bike	mIoU↑	mIoU*↑
SPIGAN[11]	\checkmark	71.1	29.8	71.4	3.7	0.3	33.2	6.4	15.6	81.2	78.9	52.7	13.1	75.9	25.5	10.0	20.5	36.8	42.4
AdaptSegnet[26]		79.2	37.2	78.8	_	—	—	9.9	10.5	78.2	80.5	53.5	19.6	67.0	29.5	21.6	31.3	_	45.9
AdaptPatch[37]		82.2	39.4	79.4	_	—	—	6.5	10.8	77.8	82.0	54.9	21.1	67.7	30.7	17.8	32.2	_	46.3
CLAN[38]		81.3	37.0	80.1	_	—	—	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	—	47.8
Advent[19]		87.0	44.1	79.7	9.6	0.6	24.3	4.8	7.2	80.1	83.6	56.4	23.7	72.7	32.6	12.8	33.7	40.8	47.6
DADA[12]		89.2	44.8	81.4	6.8	0.3	26.2	8.6	11.1	81.8	84.0	54.7	19.3	79.7	40.7	14.0	38.8	42.6	49.8
CTRL[13]		86.9	43.0	80.7	19.2	0.9	27.2	11.6	12.6	81.3	83.2	60.7	24.0	84.2	46.2	22.0	44.2	45.5	52.4
Ours		85.3	40.2	79.7	19.6	1.3	29.4	29.7	32.2	82.5	79.2	64.3	26.7	85.2	49.4	22.7	44.9	48.2	55.5

SYNTHIA \rightarrow Cityscapes (16 classes)

Table 1: The quantitative results of different methods for semantic segmentation performance (IoU and mIoU, %) on SYNTHIA \rightarrow Cityscapes(16 classes).

				(a) SYNTHIA \rightarrow Cityscapes (7 classes)						(b) SYNTHIA \rightarrow Mapillary (7 classes)								
Res.	Model	Depth	flat	const	object	<i>hature</i>	sky	human	Vehicle	mIoU↑	flat	const	object	<i>Nature</i>	sky	human	Vehicle	mIoU↑
320*640	SPIGAN[11] Advent[19] DADA[12] CTRL[13] Ours	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	91.2 86.3 89.6 90.8 92.6	66.4 72.7 76.0 77.5 78.2	9.6 12.0 16.3 15.7 23.4	56.8 70.4 74.4 77.1 77.2	71.5 81.2 78.3 82.9 82.9	17.7 29.8 43.8 45.3 49.6	60.3 62.9 65.7 68.6 69.8	53.4 59.4 63.4 65.4 67.7	74.1 82.7 83.8 86.6 86.2	47.1 51.8 53.7 57.4 58.7	6.8 18.4 20.5 19.7 19.4	43.3 67.8 62.1 73.0 68.9	83.7 79.5 84.5 87.5 86.1	11.2 22.7 26.6 45.1 40.4	42.2 54.9 59.2 68.1 62.4	44.1 54.0 55.8 62.5 60.3
Full	Advent[19] DADA[12] CTRL[13] Ours	 	89.6 92.3 92.4 92.4	77.8 78.3 80.7 81.8	22.1 25.0 27.7 34.3	76.3 75.5 78.1 78.9	81.4 82.2 83.6 82.0	54.7 58.7 59.0 64.5	68.7 72.4 78.6 74.1	67.2 70.4 71.4 72.6	86.9 86.7 88.5 87.7	58.8 62.1 59.2 68.6	30.5 34.9 27.8 33.7	74.1 75.9 79.4 74.8	85.1 88.6 85.7 93.0	48.3 51.1 64.4 61.4	72.5 73.8 79.6 73.4	65.2 67.6 69.2 70.4

Table 2: The quantitative results of different methods for semantic segmentation performance (IoU and mIoU, %) on SYNTHIA \rightarrow Cityscapes(7 classes) and SYNTHIA \rightarrow Mapillary (7 classes) in low-resolution and full-resolution.

Figure 2: Qualitative results on SYNTHIA \rightarrow Cityscapes (16 classes).

Figure 3: Qualitative results on: SYNTHIA \rightarrow Cityscapes (7 classes) (upper two rows) and SYNTHIA \rightarrow Mapillary (7 classes) (lower two rows).

Table 3: Ablation study of different components of our method

Situation	mIoU(%)↑			• ro	ad		M1	M2
			The second second	• bu	uilding	$ P_{o}l $	07	05
01	1 1 1	a month and the second		• w	all	$ net \downarrow$	0.7	0.3
S 1	44.1			 fe pc 	ence	$Rel^2 \bot$	13.7	9.0
CO	12 1			 lig 	ght	DMC	20.7	10 2
52	43.4			• si	gn	$RMS\downarrow$	20.7	19.3
53	37.8			• Ve	eg ky	$LRMS \downarrow$	0.9	0.7
05	57.0			• pe	erson der	δ_{-}	0.21	0 26
SA	<i>A</i> 37			• ca	ar	011	0.21	0.20
Ът	ч <i>3.1</i>			• bu	us	$\delta_2 \uparrow$	0.40	0.48
S 5	11 8	(a) donth+commentation joint space	(b) density transmontation joint appage	• m	hbike		0.70	
55	77.0	(a) depin+segmentation joint space	Correction your segmentation joint space	• DI	ike	o_3	0.56	U.66

 Table 4: Other analysis of different feature combinations

Figure 4: Comparison for qualitative results on spatial prior pseudo-labels refinement.

Thank you!