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Backg round: rL agents are vulnerable. Why?

Vulnerability from DNN approximator

Deep reinforcement learning learns complex
policies In large-scale tasks using DNNSs.
Well-trained DNNs easily fail under adversarial
attacks of the input.

“panda” “gibbon”
57.7% confidence 09.3% confidence

Intrinsic vulnerability

Intrinsic vulnerability of policies comes
from the dynamics of the environment.
Red policy can be dangerous under
adversarial perturbations!!!
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Challenge: Efficiently Enhancing Intrinsic Robustness

Problems: Long-term
vulnerability

How to learn RL policies with
stronger intrinsic robustness.

lgnoring the worst case may fail

Regularization-based methods[1]
neglecting the intrinsic vulnerability,
fail under strong attacks.
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Prior Solutions

Difficulty: Efficiency

Efficiently robust training without
requiring much more effort than
vanilla training.

Very expensive robust training

SOTA Alternating Training with Learned
Adversaries (ATLA)[Z2] doubles the
computational cost.
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Training Framework:

WocaR-RL

Worst-case-aware Robust

RL: directly optimizes the
worst-case values

Improve
Robustness

obtain 20% more
rewards under
the strongest attacker

EQurs mSOTA

Steps(m)

Time(h) T—

Efficiency

saves about 50% training
samples and 50% time

Interpretable
Behaviors

learns to lower down
its body, which is more
Intuitive and interpretable



Our Methods

Mechanism 1: Worst-attack Value Estimation

« Worst-attack Bellman Operator as a contraction:
(ZEQ)(SJ Cl) = [ES’wP(s, a) [R(S, a) + ymina’eﬂadv(sl, n)Q(S’; a’)

¢ Estimating worst-attack value by minimizing the estimation loss:

Lest Q¢ NE Ve — QZ(St,at))Z,

_1 b
where yp = 1y +ymingrc 4., (.., a,)gg(stﬂ, a')

A 44, denotes the set of actions an adversary can mislead the victim m into selecting by
perturbing the state s;,; into a neighboring state $; ;.



Our Methods

Mechanism 2: Worst-case-aware Policy Optimization

¢ Minimizing the worst-attack policy loss below:

Luse (163 QF) = =y 2 > malalsd) Qe @),

where qu s the worst attack critic learn via L,

¢ We lllustrate how to implement L,, s+ for PPO and DOQN



Our Methods
Mechanism 3: Value-enhanced State Regularization [ NEIIEN ERUNENEN

(left) high weight w(s) and (right) low weight w(s

v Characterize state importance s € &

w(s) = maxalecﬂQn(S a;) — mmazedan(S az)

v By Iincorporating the state importance weight, regularize the policy
network |oss:

N | _
Lreg(ne) = ) W(sImaxsen, s Dist(ma(se), me(50)



WocaR: Generic Training Framework

base DRL loss (PPO,DQN,...)
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¢ Training architecture: T
est
evaluating worst-attack value
We train an extra worst- T Q"
attack critic network Qg: 0 < —¢
_ worst-case-aware policy optimization
L T o= L T Policvy Network ws Worst-attack
Q¢ est (qu) y Lre g Critic Network
value-enhanced state regularization

v Optimize the policy network g by minimizing the combined loss:

Ly, = Lpp +Kwst Lyse + KregLreg
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Experiments

Walker2d

Rewards against MaxDiff attacks

Hopper

Rewards against MaxDiff attacks
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Rewards against Robust Sarsa attacks

Rewards against Robust Sarsa attacks

State-of-the-art Robustness of WocaR-PPO
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Rewards against SA-RL attacks

Rewards against SA-RL attacks

SA-RL
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Experiments

Worst-case Rewards (Robustness)

Worst-case Rewards (Robustness)

3,000

1 | 1 1 | |

2,500 —

2,000 ~

1,500

1,000 -

500

~@- SA-PPO

—4— ATLA-PPO ‘+—
~@- PA-ATLA-PPO

—A- RADIAL-PPO —+—

—s#— WocaR-PPO (Ours) L

ey 1

T I T T T T
2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

Natural Rewards (Performance)

3’000 1 1 | | |
—@&- SA-PPO
2,500 —— ATLA-PPO
WYY —e— PA-ATLA-PPO i
—4— RADIAL-PPO
2,000 -| —3 WocaR-PPO (Ours) .
1,500 — =
1,000 — t -
500 T T | I T
1,500 2,000 2,500 3,000 3,500 4,000 4,500

Natural Rewards (Performance)

Natural performance v.s. Robustness
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WocaR-RL maintains
competitive natural rewards
under no attack,

which successfully gains more
robustness without losing too
much natural performance.



Experi ments State-of-the-art Robustness of WocaR-DON

BankHeist (e = 3/255) RoadRunner (e = 3/255)

PA-AD MinBest

MinBest Clean

DON 1308 0 119 102 45527 0 2985 203
SA-DON 1245 1176 1024 4389 44638 20678 4214 5516
RADIAL-DON 1178 1176 928 508 44675 38576 8476 1290

Ours 1220 1214 1045 754 44156 38720 10545 8239




Experi ments Significant training efficiency of WocaR-PPO

mOurs ®ATLA-PA ®mATLA-PPO ®=mRADIAL-RL mOurs ®ATLA-PA ®mATLA-PPO ®=mRADIAL-RL
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Sampling: requires only 50% or 75% steps for reliably convergence
Time: achieves 1.5 or 2x faster training
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ATLA ATLA-PA *Smart* WocaR-RL

WocaR-RL learns more

Interpretable behaviors than
SOTA robust methods
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