Fast Algorithms for Packing Proportional Fairness
and its Dual

David Martinez-Rubio
joint work with Francisco Criado and Sebastian Pokutta
Zuse Institute Berlin & TU Berlin

NeurlPS 2022

ﬂﬁ Berlin Mathematics Research Center Z y

a-Fairness and Proportional Fairness

a-fairness: a family of fair objectives

Maximize the (1 — «)-mean of coordinates of a point in a convex set.
® o = 0 = arithmetic mean, maximize utility, no fairness.
® o = 1= geometric mean, proportional fairness.
® o — oo = max-min fairness.

In this work: Proportional fairness.

e Studied in economics in Nash bargaining solutions, in game
theory, multi-resource allocation in compute clusters, rate
control in networks.

Zy 1/9

Packing Proportional Fairness and its Dual

Packing Proportional Fairness problem, A € Mpn(R>o):
n
def
= I it Ax <1 .
max {f(x) ’; ogX; 1 AX < m}
And its Lagrange dual is:
i log(ATA); — nl
min, {g()\ ; og(A"N\)j—n ogn}

fast

e Approximate primal solution 4 approximate dual solution.

e We design two very different algorithms for each problem.

)

2/9

Results and Comparison

Paper Problem | Iterations Width-dependence?
(Beck et al., 2014) Primal | O(p®mn/e) Yes
(Marasevit et al., 2016) Primal | O(n5/e5) No
(Diakonikolas et al., 2020) | Primal | O(n?/<?) No
CMP (Theorem 5) Primal | O(n/e) No
(Beck et al., 2014) Dual O(p\/mn/e Yes
CMP (Theorem 9) Dual | O(n?/e) No
o p 1A is the width of the matrix.
NA;#o Ajj

e Aisam x n matrix.

e Our algorithms: accelerated, distributed, deterministic and
width-independent.

)

3/9

Primal problem
Reparametrize x — exp(y) and remove constraints by adding a fast
growing barrier (Diakonikolas et al, 2020):

B

n 1+
)= =Dyt 1+,BZ(AeXp y));” , where 3 ~
i=1

Proposition: If y¢ is an e-minimizer of f,, then
is an O(e)-maximizer of f.

9
nlog(mn?/e)

y© is feasible and

1
1+e/n

419

Primal solution: Acceleration

Acceleration: Combine a GD algorithm with an online learning

algorithm. Progress of the former compensates instantaneous regret
of the latter.

IVF I
2L

We use non-standard versions of a Gradient Descent algorithm and of
a Mirror Descent algorithm by using truncated gradients.

Zy 5/9

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective
has structure:

ifr(x) € [-1,00) for j € [n].
* A small gradient step decreases the function value significantly:

(Vfr(x), B) = fr(x) = fr(x = A) = <Vfr(X) A) = o,
for A € R" satisfying the following:

def

A; = 2|
ACEG))

min{Vf(x),1}, V¢ €[0,1],Vj € [n].

Zy 6/9

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective
has structure:

ifr(x) € [-1,00) forj € [n].
* A small gradient step decreases the function value significantly:

(Vfr(x), B) = fr(x) = fr(x = A) = <Vfr(X) A) = o,
for A € R" satisfying the following:

« GO

A=
4(1+4 B)

2. We run Mirror Descent on truncated losses.

min{Vf(x),1}, V¢ €[0,1],Vj € [n].

T

Zx,)=o) < (T) Xy = X°) +3 37 (VFolx)~VFr).)

i=1

Regret

3. The gradient step compensates the MD regret and the regret we
ignored due to truncation.

Dual Problem: The Centroid Map and a Reduction

def n . < = i i
P=1{x€R :AX < Im}, < (nhﬁ""nhn)’
D = convi{A; : i € [m]} D = (conv{A; : i € [m]} + (—00,0]") NRL,

i (D) C ¢(D")

min_ {g(p) “ max (A, p) }.

pec(Dt) ie[m]

718 Proposition: If p = c(A"\) and p is an (¢/n)-minimizer of
=/ g,then \is an e-minimizer of the dual problem g. 719

Dual Problem: The PST Framework

Optimizing § is an (approximate) linear feasibility problem: Find
x € ¢(DT) such that Ax < (1+¢)1p.

PST Framework
e Generate a covering constraint as h = AT\, for weights A\ € A™.
e Use an oracle to satisfy h: Find x € ¢(D") s.t. (h,x) <1

e Increase the weight \; the more, the greater (A;,x) —1 € [T, 0] s,
i.e., the more x does not satisfy A; (MWs algorithm).

e Guarantees convergence in O(o7/e?).

)

Improving over PST: Adaptive Oracle
The closer we are to a solution the smaller the lens L; is.
= the smaller 7 and ¢ are.

Improved strategy
e Implement an oracle that yields smaller 75 and o5 if § is lower.
e Start with a 6-minimizer of g.

® Find a 6/2-minimizer using the adaptive oracle and PST: It takes
O(7505/(6/2)?).
e Repeat until § < /n. Total complexity is O(n?/e).

)

9/9

