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Tree Structured Prediction

@ Task: Given training data {(x1,y1),(x2,¥2), .-, (Xm,¥m)}, learn a
mapping f : X — ), where ) is the space of tree-shaped objects
(discrete, exponential but structured)

@ Dependency Parsing: A large body of literature focuses on predicting
dependency tree structures in natural language processing
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Background

Statistical Learning: Test vs Train

@ The ultimate goal is to perform well on test data, in terms of a
performance metric L, typically piecewise-constant and discontinuous,
usually intractable to optimize on training data

Ntrain
min L(f(xi),yi)

feF <
i=1

@ Resort to surrogate loss and mappings for easier optimization
Mtrain
mein z; S(go(xi), yi)
=

@ Might lead to discrepancy between training and testing objectives
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Background

Design of Losses

loss functions

computationally statistically
efficient consistent

(SSVM, etc.) (proper losses, etc.)

desirable
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Background

Fisher Consistency

Definition (Fisher consistency)

Given a space H of all measurable functions X — P()), a space G of all
measurable functions X — 7T, and a surrogate loss function

S:T xP(Y) — R4, we say that the surrogate loss S is Fisher consistent
with respect to the loss L : P(Y) x P()) — R if there exists a function
d: T +— P(Y) such that for every probability distribution P on X x J,
every minimizer g* of the surrogate risk reaches Bayes optimal risk:

Rg(g") = min R2(g) = Ri(d o g") = min Ri(h).
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Existing Methods

e Empirical risk minimization (K-best lists (Smith and Eisner, 2006),
automatic differentiation (Stoyanov and Eisner, 2012))

mglnzz (yi,y)Pro(y|x) _ZZ (yi,y exp(scoreg(x,-,y))

. !
i=1yey i=1 yey y exp(scoreg(xi, y'))

e Conditional log-likelihood (deep learning (Dozat and Manning, 2017),
matrix tree theorem (Koo et al., 2007))

m
min Z scoreg(x;, yi) + log Z exp(scoreg(xi, y))

i=1 y
@ Max-margin (Structured SVM (Taskar et al., 2004))
m
i - i Yi j L(yi,
min ; scoreg(x;, yi) + m;:\x(scoreg(x,,y) + L(yi,y))
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Background

Motivation

o Existing methods are either NOT Fisher consistent or NOT convex

@ Existing methods rely on instinctive regularization to combat
overfitting, without good probabilistic interpretation

loss functions

computationally statistically
efficient consistent

(SSVM, etc.) (proper losses, etc.)

desirable
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Proposed Method (Primal)

Distributionally robust optimization based on moment divergence
inf sup Ez 5 L\A’,\v’
o B.(P):={P: |[Ep,  o(X,Y)~ Es, ,O(X,Y)| <eBx = Px} is a
convex compact ambiguity set quantifying the uncertainty about the
underlying true distribution

° d(x,y) = rcr ®(x,yr) is a feature mapping decomposable over
factors f
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Proposed Method (Dual)

Proposition (dual norm regularization)

The distributionally robust tree structured prediction problem based on
moment divergence can be rewritten as

moin E]P);":F;, mIFi)n m(SXEme,wag(?’ Y)+0T(p(X,Y)— (X, Y))+¢<|6].,

gadv(ev(xvy))

where @ € RY is the vector of Lagrangian multipliers and ||-||+ is the dual
norm of ||-||.
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Algorithm: Game Theory

@ The inner minimax problems are independent conditioned on X

6

@ Use constraint generation to find a Nash equilibrium IPY|X,

min Epemp min max Ep_ y
Px,y p Q Py x: Qv x

payoff( Y. Y)

@ No convergence guarantees
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Algorithm: Marginal Distribution

@ Assuming additive L, rearrange the order of optimization variables

m

1 N . .
in L in (@) — p Vg _ (p. gl
q(gnea/i(arb meln m Z prgfllz]rb(q pemp) <p’ q >

7 By (i A
+ §HPH§ - E”q(')H% + 5”‘9’\%

@ Converges to the global optimum
@ Requires an oracle for projection onto the arborescence (directed
spanning tree) polytopes
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Projection on the Arborescence Polytope

Constrained quadratic programming

min f(x):= |[|[x — w2
Jmin £(x) =[x — w3
w
®
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Projection on the Arborescence Polytope

Proposed solutions

e Frank-Wolfe (Frank and Wolfe, 1956)
e Based on minimum weight directed spanning trees
o Low per-iteration cost
o Sub-linear convergence rate O(2)

o Alternating Direction Method of Multipliers (Boyd et al., 2011)
o Based on a compact representation of the first-order arborescence

polytope (Friesen, 2019)

o Higher per-iteration cost
o Linear convergence rate O(log 1)
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Excess True Risk Bound

Theorem

Given m samples, a non-negative loss /(-,-) such that |¢(-,-)| < K, a
feature function ¢(-,-) such that ||¢(:,-)|| < B, a positive ambiguity level
e > 0, then, for any p € (0, 1], with a probability at least 1 — p, the
following excess true worst-case risk bound holds:

4KB In(4
max  RE(0%n,) —  max  RE(0ie) < <1+3 n( /p)>,

QGB(P"“E) QGB(I[Dtrue) true 5\/5 5 2

where ¢, and 6}, are the optimal parameters learned under P*™P and
Ptrue respectively. The original risk of @ under Q is
R@(O) =Eg, VS, K(Y Y') with Bayes prediction

%, € argming maxQ Eqy,py, l(Y. V) +07¢(x, Y).
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Fisher Consistency

Corollary of Proposition C.2 in Nowak et al. (2020)

When ¢ = 0, £,qy is Fisher consistent with respect to £. Namely, P%;l'; is
the probabilistic prediction made by the Bayes optimal decision rule.
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Results
o Datasets: PTB, CTB, UD
@ Baseline: Deep Biaffine Attention (Dozat and Manning, 2017)
@ Marginal: use marginal probabilities with full gradient
@ Stochastic: use marginal probabilities with mini-batch
e Game: constraint generation (double oracle)

Table 1: Comparison of mean unlabeled attachment score (UAS) and execution time under different
training set sizes. Time refers to the CPU time taken to finish one gradient descent step. Statistically
significant differences compared to BiAF are marked with { (paired t-test, p < 0.05). The best UAS
are highlighted in bold.

PTB CTB UD Dutch
Method Time (s) m=10 50 100 1000 m=10 50 100 1000 m=10 50 100 1000
BiAF (baseline) 0.34 9348 96.87 96.95 97.16 88.45 90.89  91.15 91.70  90.86 93.80 94.15 94.98

Marginal (ours) ~ 0.28  94.51f 96.81f 96.92 97.12 89.19f 91.03f 9127 9167 92.41f 94.22f 9450t 95.15%
Stochastic (ours) 272 94.62f 96.81 9693 97.14 89.27 91.03f 91.27 91.66 9240t 9423t 9447  95.14f
Game (ours) 725 9451t 96.86 9692 97.08f 89.22f 91.06t 91.22 9L57f 92.32t 94.34f 94.59f 9501
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More Results
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Figure 1: Convergence of Alternating Direc-
tion Method of Multipliers (ADMM) and Frank-
Wolfe (FW) for random points with 95% confi-

dence intervals.
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Figure 2: The best unlabeled attachment score
(UAS) with the Marginal algorithm as x4 and A
vary in logarithmic scales.

17/21



Conclusion

Conclusion

@ Tree structured prediction from first principles in DRO
e Dependency, directed, undirected, higher-order trees

@ Generalization bounds and Fisher consistency
o Efficient projection oracles on arborescence polytopes

@ Code available at https://github.com/DanielLeee/drtreesp

loss functions

computationally statistically
efficient consistent

(SSVM, etc.) proper losses, etc.)

desirable
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https://github.com/DanielLeee/drtreesp

Future Work

@ General structured prediction tasks
@ Other ambiguity sets in distributionally robust optimization
@ End-to-end representation learning (code available)

81,0 adv B Z - Pemp)
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Q&A

Thank you!
Q&A
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