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Background

Tree Structured Prediction

Task: Given training data {(x1, y1), (x2, y2), . . . , (xm, ym)}, learn a
mapping f : X → Y, where Y is the space of tree-shaped objects
(discrete, exponential but structured)

Dependency Parsing: A large body of literature focuses on predicting
dependency tree structures in natural language processing
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Background

Statistical Learning: Test vs Train

The ultimate goal is to perform well on test data, in terms of a
performance metric L, typically piecewise-constant and discontinuous,
usually intractable to optimize on training data

min
f ∈F

ntrain∑
i=1

L(f (xi ), yi )

Resort to surrogate loss and mappings for easier optimization

min
θ

ntrain∑
i=1

S(gθ(xi ), yi )

Might lead to discrepancy between training and testing objectives
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Background

Design of Losses

computationally

efficient


(SSVM, etc.)

statistically

consistent


(proper losses, etc.)

desirable

loss functions
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Background

Fisher Consistency

Definition (Fisher consistency)

Given a space H of all measurable functions X 7→ P(Y), a space G of all
measurable functions X 7→ T , and a surrogate loss function
S : T × P(Y) 7→ R+, we say that the surrogate loss S is Fisher consistent
with respect to the loss L : P(Y)× P(Y) 7→ R+ if there exists a function
d : T 7→ P(Y) such that for every probability distribution P on X × Y,
every minimizer g∗ of the surrogate risk reaches Bayes optimal risk:

RS
P (g

∗) = min
g∈G

RS
P (g) =⇒ RL

P(d ◦ g∗) = min
h∈H

RL
P(h).
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Background

Existing Methods

Empirical risk minimization (K -best lists (Smith and Eisner, 2006),
automatic differentiation (Stoyanov and Eisner, 2012))

min
θ

m∑
i=1

∑
y∈Y

L(yi , y)Prθ(y |xi ) =
m∑
i=1

∑
y∈Y

L(yi , y)
exp(scoreθ(xi , y))∑
y ′ exp(scoreθ(xi , y ′))

Conditional log-likelihood (deep learning (Dozat and Manning, 2017),
matrix tree theorem (Koo et al., 2007))

min
θ

m∑
i=1

−scoreθ(xi , yi ) + log
∑
y

exp(scoreθ(xi , y))

Max-margin (Structured SVM (Taskar et al., 2004))

min
θ

m∑
i=1

−scoreθ(xi , yi ) + max
y

(scoreθ(xi , y) + L(yi , y))
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Background

Motivation

Existing methods are either NOT Fisher consistent or NOT convex

Existing methods rely on instinctive regularization to combat
overfitting, without good probabilistic interpretation

computationally

efficient


(SSVM, etc.)

statistically

consistent


(proper losses, etc.)

desirable

loss functions
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Method

Proposed Method (Primal)

Distributionally robust optimization based on moment divergence

inf
P̂

sup
P̌∈Bε(P̃)

EP̃X ,P̂Ŷ |X ,P̌Y̌ |X
L(Ŷ , Y̌ )

Bε(P̃) := {P̌ : ∥EP̌X ,Y̌
ϕ(X , Y̌ )− EP̃X ,Y

ϕ(X ,Y )∥ ≤ ε, P̌X = P̃X} is a

convex compact ambiguity set quantifying the uncertainty about the
underlying true distribution
ϕ(x , y) :=

∑
f ∈F ϕ(x , yf ) is a feature mapping decomposable over

factors f

2ε

Δn

Bε
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Method

Proposed Method (Dual)

Proposition (dual norm regularization)

The distributionally robust tree structured prediction problem based on
moment divergence can be rewritten as

min
θ

EPemp
X ,Y

min
P

max
Q

EPŶ |X ,QY̌ |X
ℓ(Ŷ , Y̌ ) + θ⊺(ϕ(X , Y̌ )− ϕ(X ,Y )) + ε∥θ∥∗︸ ︷︷ ︸

ℓadv(θ,(X ,Y ))

,

where θ ∈ Rd is the vector of Lagrangian multipliers and ∥·∥∗ is the dual
norm of ∥·∥.
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Method

Algorithm: Game Theory

The inner minimax problems are independent conditioned on X

min
θ

EPemp
X ,Y

min
P

max
Q

EPŶ |X ,QY̌ |X
payoff(Ŷ , Y̌ )

Use constraint generation to find a Nash equilibrium P∗
Ŷ |X , Q∗

Y̌ |X
No convergence guarantees

Li et al. (UIC & TTIC) Robust Tree Prediction Nov. 2022 10 / 21



Method

Algorithm: Marginal Distribution

Assuming additive L, rearrange the order of optimization variables

max
q(i)∈Aarb

min
θ

1

m

m∑
i=1

min
p∈Aarb

(q(i) − p(i)
emp)

⊺Φ(i)θ − ⟨p,q(i)⟩

+
µ

2
∥p∥22 −

µ

2
∥q(i)∥22 +

λ

2
∥θ∥22

Converges to the global optimum
Requires an oracle for projection onto the arborescence (directed
spanning tree) polytopes

0.7 + 0.3 0.3

0.7
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Method

Projection on the Arborescence Polytope

Constrained quadratic programming

min
x∈Aarb

f (x) := ∥x − w∥22
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Method

Projection on the Arborescence Polytope

Proposed solutions

Frank-Wolfe (Frank and Wolfe, 1956)

Based on minimum weight directed spanning trees
Low per-iteration cost
Sub-linear convergence rate O( 1ϵ )

Alternating Direction Method of Multipliers (Boyd et al., 2011)

Based on a compact representation of the first-order arborescence
polytope (Friesen, 2019)
Higher per-iteration cost
Linear convergence rate O(log 1

ϵ )
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Method

Excess True Risk Bound

Theorem

Given m samples, a non-negative loss ℓ(·, ·) such that |ℓ(·, ·)| ≤ K , a
feature function ϕ(·, ·) such that ∥ϕ(·, ·)∥ ≤ B, a positive ambiguity level
ε > 0, then, for any ρ ∈ (0, 1], with a probability at least 1− ρ, the
following excess true worst-case risk bound holds:

max
Q∈B(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈B(Ptrue)
RL
Q(θ

∗
true) ≤

4KB

ε
√
m

(
1 +

3

2

√
ln(4/ρ)

2

)
,

where θ∗emp and θ∗true are the optimal parameters learned under Pemp and
Ptrue respectively. The original risk of θ under Q is
RL
Q(θ) := EQX ,Y ,Pθ

Ŷ |X
ℓ(Ŷ ,Y ) with Bayes prediction

Pθ
Y |x ∈ argminPmaxQ EQY̌ |xPŶ |x

ℓ(Ŷ , Y̌ ) + θ⊺ϕ(x , Y̌ ).
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Method

Fisher Consistency

Corollary of Proposition C.2 in Nowak et al. (2020)

When ε = 0, ℓadv is Fisher consistent with respect to ℓ. Namely, Pθ∗
true

Ŷ |X
is

the probabilistic prediction made by the Bayes optimal decision rule.
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Experiments

Results

Datasets: PTB, CTB, UD

Baseline: Deep Biaffine Attention (Dozat and Manning, 2017)

Marginal: use marginal probabilities with full gradient

Stochastic: use marginal probabilities with mini-batch

Game: constraint generation (double oracle)
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Experiments

More Results
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Conclusion

Conclusion

Tree structured prediction from first principles in DRO

Dependency, directed, undirected, higher-order trees

Generalization bounds and Fisher consistency

Efficient projection oracles on arborescence polytopes

Code available at https://github.com/DanielLeee/drtreesp

computationally

efficient


(SSVM, etc.)

statistically

consistent


(proper losses, etc.)

desirable

loss functions
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Conclusion

Future Work

General structured prediction tasks

Other ambiguity sets in distributionally robust optimization

End-to-end representation learning (code available)

∂

∂ψ(x)
ℓadv ∈

1

B

B∑
i=1

(q(i)∗ − p(i)∗
emp)
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Q & A

Thank you!

Q & A
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