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01 Introduction

Why SSL models fails in barely supervised learning?
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Eﬁﬁ Investigate Classification Models From Immutability and Separability

QQ

ol

0 Immutability - (ui )

The capacity of the model to be robust
to perturbations.

[ Separability J' mofel
The capacity of the model to differentiate argmaxpn(yia(w)) = argmaxpn(ylu;) £ argmaxpy (ylu;)
two different categories of samples. L . Je Sl

immutability separability

How an semi-supervised learning model learns immutability and separability?
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[ Immutability: learning consistent information (unlabeled data)
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[ Separability: learning discriminative information (labeled data)
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[ Barely supervised learning (BSL)

accuracy (%)
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I(max(gs) > 7) H(Gh, pm(y | A(us)))

gﬁb Scarce Discriminative Information Learning in Barely Supervised learning

Scarce labeled data is not sufficient to provide sufficient discriminative information. resulting in the failure of the SSL model.

model performance
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2 Method

How to mine discriminative information from unlabeled data?
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F—'ﬁb A Novel Discriminative Information Learning Module
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Discriminative Information Learning Module
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0 Super-class: a coarse cluster

We cluster unlabeled samples into K clusters at the feature space, each cluster will
have samples from multiple categories at the same time.

0 Super-class representation: the character of the categories

We calculate the mean of the predicted probability distribution for all samples and
use this as a representation of the super-class.

[Ck|
Qk ‘C { zpm, y‘ uz Wimui = Ck

0 Discriminative distribution loss

we design a contrastive-like distribution loss to distinguish the sample from other
super-classes.

| Bu exp(pm (y|A(ui)) - G /T)

i) ] [ s ]

L)

Lais = — (u:))) 2 72) log —

e Zj:l exp{pm(y|A(ui)) : EE/T)

Learning Similarity Relationships Between Samples and Super-classes
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gﬁb Discriminative Information: From Coarse to Fine
N

Super-class: simplify the clustering task to simplify the clustering task

0 Ideally, samples of the same category will form a separate cluster so that the model can discriminate the samples from all other
clusters of samples. However, forming such fine-grained clusters carries a considerable risk of errors, especially for tasks
with a large number of object categories.

0 Instead of fine-grained clusters, we simplify the clustering task by allowing a cluster to contain multiple categories. In this way,
the discriminative information is relatively weakened but more robust to clustering errors.

Progressive super-class construction: from coarse to fine information

0 When the model is not well trained at the beginning, we use a small K to form the coarser super-classes to ease the clustering
task and thus attain relatively reliable discriminative guidance.

0 When the model is better trained, to avoid the training of the model being stagnant due to the limitation of discriminative
information, we gradually increase K to provide enhanced discriminative guidance.

0 We adopt a linear-step growth strategy to adjust K dynamically:

K=K; i R;=

< Kiq1
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03 Experiments

Significant model performance improvements
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0 Significantly better than other SSL and BSL models

%ﬁf) Significant Model Performance Improvements

~#— linear-mode

CIFAR-10 CIFAR-100 STL-10

Method 10 labels 20 labels 100 labels 200 labels 10 labels 20 labels
Mean-Teacher 15.48 + 3.19 1750+ 1.16  5.17 + 2.52 8.26 + 3.43 11.05 £+ 6.45 15.99 + 6.45
MixMatch 17.18 + 4.45 26.45+ 8.17 12.85+2.21 21.56+4.84 10.94+5.18 21.48 + 3.17
ReMixMatch 60.29 4+ 15.20 78.56+9.63 26.18+3.79 35.90+3.66 30.86 + 10.80 45.58 + 8.36
FixMatch 44.47+24.99 80.46+5.15 2549+4.37 35.55+1.59 25.75 + 8.99 48.98 + 6.46
FixMatch (w/DA)  67.79 + 15.42 84.16 + 9.27 31.10+2.29 43.22 +1.87 42.08 +6.24 54.76 &+ 5.44
CoMatch 60.79 +12.42 81.19+4+8.55 27.54+4.25 36.98+2.17 29.11 +9.31 50.20 4+ 7.57
FlexMatch 66.07 4= 10.58 85.69 + 6.24 31.50 £+ 3.61 38.05 + 2.66 41.17 £ 6.20 54.30 £+ 5.65
SLA 65.87 + 10.83 81.890 4+ 6.77 28.45 4+ 2.16 38.65 + 2.67 32.38 + 8.32 47.50 + 6.38
LESS 64.40 £ 10.90 81.2045.60 28.20 £ 3.00 42.50 £3.20 34.25 + 7.19 48.98 4+ 5.19
our method 76.76 + 6.78 88.49 4+ 3.26 37.50 + 1.72 45.62 4+ 1.39 52.51 4+ 3.20 57.98 + 3.18

0 More stable 0 Imnsensitive to K

seed 1 2 3 4 5 b %

= 68.54
FixMatch 19.15 85.11 52.52 17.09 48.50 g g
our method 81.28 86.12 70.34 7490 71.17 £
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