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Adversarial Attack on VAEs

x‘=x"4+e¢€, |lel| <o

Unsupervised
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We focus on unsupervised attacks
defined in the prior works

xCl

E =

— X" +¢e ||l <6
arg max A [f(x” + €), f(x’”)]

lell ;<0

Table 1: Different types of attacks on the VAE. We denote g4(z) the deterministic mapping induced by decoder py(x|z) and
as p,,(y|z) classification model in the latent space (downstream task).

" Only used during VAE training

REFERENCE flx) A A, B |- lp TYPE
(Gondim-Ribeiro et al.,
Latent Space Attack 2018; Willetts et al., 2021; - KL [A|| B] 2 Supervised
Barrett et al., 2021)
Unsupervised Encoder S . | . .
Attack (Kuzina et al., 2021) SKL [A||B] 2 Unsupervised
Targeted Output Attack (Gondim-Ribeiro et al., 2018)  go(2). 2 ~ gs(-|x) |A — Bl|2 2 Supervised
_ , , (Barrett et al., 2021; N 5o B ,
Maximum Damage Attack Camuto et al., 2021) ga(2), 2 ~ qu(-|T) |A — Bl|2 2 Unsupervised
Projected Gradient Descent (o il et al., 2019) 25 (|x) WD A, B] inf  Unsupervised
Attack
Adversarial Accuracy (Cemgil et al., 2019; 2020) 0 CROSS ENTROPY inf Unsupervised




Defence Strategy




Defence Strategy
x“=x"+¢€, |lel| <o
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2% ~ qu(z|x%) vs 20~ quz]|x")

Let's use samples from the true posterior instead:

For that we use 7 steps of MCMC (starting from the encoder):

2"~ qW(z|xY) = | q4(z| xH0V(z] z9)dz,

with target density py(z|x9) x p(2)py(x“| z)
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Defence Strategy

d

X¥=x"+e el <8

r

4~ ng(z‘xa) Vs 7'~ %(Z‘xr)

Let's use samples from the true posterior instead:

For that we use 7 steps of MCMC (starting from the encoder):

2"~ qW(z|xY) = | q4(z| xH0V(z] z9)dz,

J

with target density py(z|x9) x p(2)py(x“| z)

Each step brings us “closer” to the true posterior:
Encode

ofenc KL [q@1x [ pyz|xD] < KL gDzl x) || pylz] x9)
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Final Algorithm

1. (Defender)
Train a VAE:

q,(2]x), P(2), py(x | 2)

2. (Attacker)
For a given x’, construct the attack x“

x‘=x"+e¢ ||| <o
s.t q,(z]|x%) is "far enough” from g, (z | x")

3. (Defender)
nitialize the latent code 7y ~ g(z | x)

Run T steps of HMC with the target « p(2)py(x“|z) Encode _
Use 7 := 7z to decode / in downstream task MCMC
defence _
~a
X Decode

* Note that g, and p, can be of any form, e.g., hierarchical VAEs

14



Why it works?

Theoretical justification
x‘“=x"+¢€ ||l <o

2"~ qyzlx) vs 29~ qP(z|x9)



Why it works?

Theoretical justification
a r
x“=x"+e, |lel| <o
Zr - q¢(z\xr) VS Z(f) -~ q(t)(Z‘Xa)

Theorem:

TVl x9llgy(z 2] < 1/ KL [g 9 1 lIpgte] x9)] + \/ IKL | gy(z1x)Ipgtz] x| + oty/Tel)

How good Goes to O with ¢ How good VAE is Attack radius
is defence (approximation gap)
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Why it works?

Empirical Evidence

Given a reference point, one can evaluate posterior ratio for
two latent codes:
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Blue: reference latent code VS adversarial latent code
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reference latent code VS adversarial latent code after HMC
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What if attacker

knowns the defence

strategy?




