A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning

Bo Liu^{1,*}, Xidong Feng^{2,*},

Jie Ren³, Luo Mai³, Rui Zhu⁴,

Haifeng Zhang¹, Jun Wang²,

Yaodong Yang⁵,

¹Institute of Automation, CAS, ²University College London,

³University of Edinburgh, ⁴DeepMind,

⁵Peking University

Problem Setting

- GMRL
 - Gradient-based Meta-Reinforcement Learning

$$\max_{\boldsymbol{\phi}} J^K(\boldsymbol{\phi}) := J^{\text{Out}}(\boldsymbol{\phi}, \boldsymbol{\theta}^K),$$

s.t.
$$\boldsymbol{\theta}^{i+1} = \boldsymbol{\theta}^i + \alpha \nabla_{\boldsymbol{\theta}^i} J^{\text{In}}(\boldsymbol{\phi}, \boldsymbol{\theta}^i), i \in \{0, 1 \dots K-1\}$$

 θ are inner-loop policy parameters, ϕ are meta parameters, α is the learning rate, J^{In} and J^{Out} are value functions for the inner and the outer-loop learner

Problem Setting

• GMRL

Gradient-based Meta-Reinforcement Learning

Table 1: Four typical gradient-based Meta-RL (GMRL) algorithms.

Category	Algorithms	Meta parameter ϕ	Inner parameter θ
Few-shot RL	MAML [10]	Initial Parameter	Initial Parameter
Opponent Shaping	LOLA [13]	Ego-agent Policy	Other-agent Policy
Single-lifetime MGRL	MGRL [39]	Discount Factor	RL Agent Policy
Multi-lifetime MGRL	LPG [26]	LSTM Network	RL Agent Policy

Problem Setting

- Meta-gradient Estimation
 - Proposition 3.1 (*K*-step Meta-Gradient).

$$\nabla_{\boldsymbol{\phi}} J^{K}(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}} J^{Out}(\boldsymbol{\phi}, \boldsymbol{\theta}^{K}) + \alpha \nabla_{\boldsymbol{\phi}} \boldsymbol{\theta}^{K} \nabla_{\boldsymbol{\theta}^{K}} J^{Out}(\boldsymbol{\phi}, \boldsymbol{\theta}^{K})$$

• $\nabla_{\phi} \theta^{K}$ takes the form:

$$\nabla_{\boldsymbol{\phi}}\boldsymbol{\theta}^{K} = \sum_{i=0}^{K-1} \nabla_{\boldsymbol{\phi}} \nabla_{\boldsymbol{\theta}^{i}} J^{In}(\boldsymbol{\phi}, \boldsymbol{\theta}^{i}) \prod_{j=i+1}^{K-1} \left(I + \alpha \nabla_{\boldsymbol{\theta}^{j}}^{2} J^{In}(\boldsymbol{\phi}, \boldsymbol{\theta}^{j}) \right)$$

Motivation

- Existing Meta-gradient Estimation is **biased**:
 - Compositional Bias in: $\nabla_{\phi} \hat{J}^{\text{Out}}(\phi, \hat{\theta}^K, \tau_3)$, $\nabla_{\hat{\theta}^K} \hat{J}^{\text{Out}}(\phi, \hat{\theta}^K, \tau_3)$
 - Multi-step Hessian Bias in: $\nabla^2_{\hat{\boldsymbol{\theta}}^j} J^{\text{In}}(\boldsymbol{\phi}, \hat{\boldsymbol{\theta}}^j, \boldsymbol{\tau}_2^j)$

Analytical Form of *K*-step Meta-Gradient Estimate:

$$\nabla_{\boldsymbol{\phi}} \hat{J}^{K}(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}} \hat{J}^{\text{Out}}(\boldsymbol{\phi}, \hat{\boldsymbol{\theta}}^{K}, \boldsymbol{\tau}_{3}) + \alpha \nabla_{\boldsymbol{\phi}} \hat{\boldsymbol{\theta}}^{K} \nabla_{\hat{\boldsymbol{\theta}}^{K}} \hat{J}^{\text{Out}}(\boldsymbol{\phi}, \hat{\boldsymbol{\theta}}^{K}, \boldsymbol{\tau}_{3})$$

 $\nabla_{\phi} \hat{\boldsymbol{\theta}}^{K}$ takes the form:

$$\nabla_{\boldsymbol{\phi}} \hat{\boldsymbol{\theta}}^K = \sum_{i=0}^{K-1} \nabla_{\boldsymbol{\phi}} \nabla_{\hat{\boldsymbol{\theta}}^i} J^{\text{In}}(\boldsymbol{\phi}, \hat{\boldsymbol{\theta}}^i, \boldsymbol{\tau}_1^i) \prod_{j=t+1}^{K-1} \left(I + \alpha \nabla_{\hat{\boldsymbol{\theta}}^j}^2 J^{\text{In}}(\boldsymbol{\phi}, \hat{\boldsymbol{\theta}}^j, \boldsymbol{\tau}_2^j) \right)$$

Compositional Bias

• Consider a non-linear compositional scalar objective $f(\theta^K)$, the gradient estimation bias comes from the fact that :

$$f(\boldsymbol{\theta}^K) = f(\mathbb{E}[\hat{\boldsymbol{\theta}}^K]) \neq \mathbb{E}[f(\hat{\boldsymbol{\theta}}^K)]$$

• If one substitutes the non-linear function $f(\theta^K)$ with $J^{\text{Out}}(\phi, \theta^K)$, then a typical meta-gradient estimation in GMRL introduces compositional bias:

$$\mathbb{E}[\nabla_{\hat{\boldsymbol{\theta}}^{K}}\hat{J}^{\text{Out}}(\boldsymbol{\phi},\hat{\boldsymbol{\theta}}^{K},\tau_{3})] = \mathbb{E}[\nabla_{\hat{\boldsymbol{\theta}}^{K}}J^{\text{Out}}(\boldsymbol{\phi},\hat{\boldsymbol{\theta}}^{K})] \neq \nabla_{\boldsymbol{\theta}^{K}}J^{\text{Out}}(\boldsymbol{\phi},\boldsymbol{\theta}^{K}).$$

$$\mathbb{E}[\nabla_{\boldsymbol{\phi}}\hat{J}^{\text{Out}}(\boldsymbol{\phi},\hat{\boldsymbol{\theta}}^{K},\tau_{3})] = \mathbb{E}[\nabla_{\boldsymbol{\phi}}J^{\text{Out}}(\boldsymbol{\phi},\hat{\boldsymbol{\theta}}^{K})] \neq \nabla_{\boldsymbol{\phi}}J^{\text{Out}}(\boldsymbol{\phi},\boldsymbol{\theta}^{K})$$

Compositional Bias

Lemma 4.4 (Compositional Bias). Suppose that Assumption 4.1 and 4.2 hold, let $\hat{\Delta}_C = \mathbb{E}[\|f(\hat{\boldsymbol{\theta}}^K) - f(\boldsymbol{\theta}^K)\|]$ be the compositional bias and C_0 the Lipschitz constant of $f(\cdot)$, $|\tau|$ denote number of trajectories used to estimate inner-loop gradient in each inner-loop update step, α the learning rate, then we have,

$$\hat{\Delta}_C \le C_0 \mathbb{E}[\|\hat{\boldsymbol{\theta}}^K - \boldsymbol{\theta}^K\|] \le C_0 \left((1 + \alpha c_2)^K - 1 \right) \frac{\hat{\sigma}_{In}}{c_2 \sqrt{|\boldsymbol{\tau}|}},\tag{6}$$

where
$$\hat{\sigma}_{In} = \max_i \sqrt{\mathbb{V}[\nabla_{\theta^i} \hat{J}^{In}(\phi, \theta^i, \tau_0^i)]}, i \in \{0, ..., K-1\}.$$

- Lemma 4.4 indicates that the compositional bias comes from the inner-loop policy gradient estimate, concerning learning rate α , sample size $|\tau|$ and variance of policy gradient estimator $\hat{\sigma}_{In}$.
- This is a fundamental issue in many existing GMRL algorithms since applying stochastic policy gradient update can introduce estimation error.

- Multi-step Hessian Bias
 - For one-step Meta-Gradient, $\nabla_{\phi} \theta^{K}$ takes the form:

$$\nabla_{\boldsymbol{\phi}}\boldsymbol{\theta}^{1} = \nabla_{\boldsymbol{\phi}}\nabla_{\boldsymbol{\theta}^{1}}J^{\mathrm{In}}(\boldsymbol{\phi},\boldsymbol{\theta}^{1})$$

• For K-step Meta-Gradient, $\nabla_{\phi} \theta^{K}$ takes the form:

$$\nabla_{\boldsymbol{\phi}}\boldsymbol{\theta}^{K} = \sum_{i=0}^{K-1} \nabla_{\boldsymbol{\phi}} \nabla_{\boldsymbol{\theta}^{i}} J^{\text{In}}\left(\boldsymbol{\phi}, \boldsymbol{\theta}^{i}\right) \prod_{j=t+1}^{K-1} \left(I + \alpha \nabla_{\boldsymbol{\theta}^{j}}^{2} J^{\text{In}}\left(\boldsymbol{\phi}, \boldsymbol{\theta}^{j}\right)\right)$$

Multi-step Hessian Bias

Theorem 4.5 (Upper bound for the bias). Suppose that Assumption 4.1 and 4.2 and 4.3 hold. Let $J_{\phi,\theta}$ denote $\nabla_{\phi}\nabla_{\theta}J^{In}$, $H_{\theta,\theta}$ denote $\nabla_{\theta}^{2}J^{In}$, $\hat{\Delta}^{K} = \|\mathbb{E}[\nabla_{\phi}\hat{J}^{K}(\phi)] - \nabla_{\phi}J^{K}(\phi)\|$ be the meta-gradient estimation bias, set $B = 1 + \alpha c_{2}$. Then the bound of bias hold:

$$\hat{\Delta}^K \le O\left((B + \hat{\Delta}_H)^{K-1} \left(\mathbb{E}[\|\hat{\boldsymbol{\theta}}^K - \boldsymbol{\theta}^K\|] + \hat{\Delta}_J + (K - 1) \right) \right). \tag{9}$$

 The multi-step Hessian bias has polynomial impact on upper bound of metagradient bias.

Understanding Existing Mitigations

- Mitigation for Compositional Bias
 - Compositional bias caused by the estimation error of inner-loop policy gradient.
 - We propose to use off-policy learning technique to handle the compositional bias problem by reusing samples.

$$\mathbb{E}_{\boldsymbol{\tau} \sim p(\boldsymbol{\tau};\boldsymbol{\theta})} \left[\sum_{t=0}^{H-1} \frac{\pi_{\boldsymbol{\theta}}(\boldsymbol{a}_t | \boldsymbol{s}_t)}{\mu(\boldsymbol{a}_t | \boldsymbol{s}_t)} \mathcal{R}_{\boldsymbol{\phi}}(\boldsymbol{\tau}) \right]$$

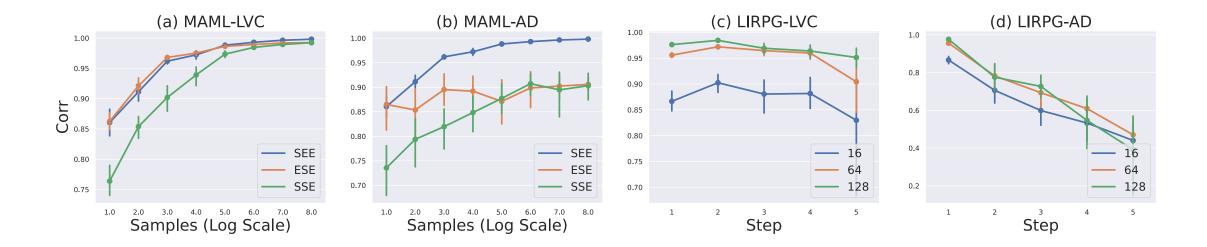
Understanding Existing Mitigations

- Mitigation for Multi-step Hessian Bias
 - Hessian estimation bias can significantly increase meta-gradient estimation bias in multi-step inner-loop setting.
 - We apply the Low Variance Curvature (LVC) method (Rothfuss et al., 2018) beyond the scope of MAML-RL.

$$\nabla_{\theta}^{2} J_{\text{LVC}}^{\text{In}}(\boldsymbol{\phi}, \boldsymbol{\theta}) = \nabla_{\theta} \mathbb{E}_{\boldsymbol{\tau} \sim p(\boldsymbol{\tau}; \boldsymbol{\theta})} \left[\sum_{t=0}^{H-1} \frac{\nabla_{\theta} \pi_{\theta}(\boldsymbol{a}_{t} | \boldsymbol{s}_{t})}{\perp \pi_{\theta}(\boldsymbol{a}_{t} | \boldsymbol{s}_{t})} \mathcal{R}_{\boldsymbol{\phi}}(\boldsymbol{\tau}) \right]$$

 where ⊥ is the stop-gradient operation and it detaches the gradient dependency from the computation graph.

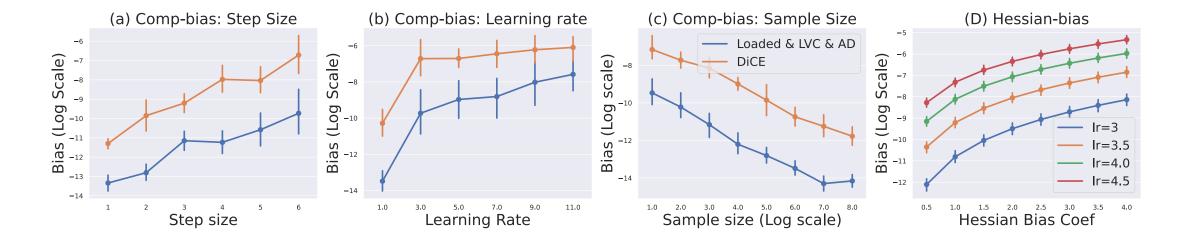
Tabular MDP



Ablation study on sample size and estimators in MAML-RL

Ablation study on sample size, steps and estimators in LIRPG

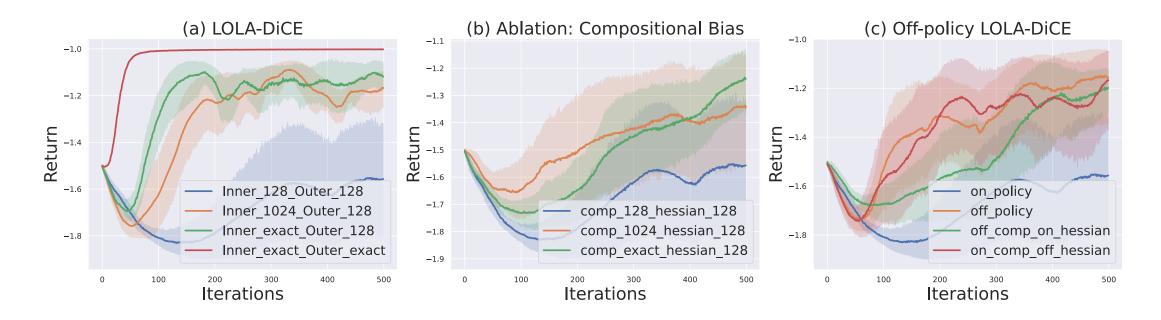
Tabular MDP



Ablation study of meta-gradient bias due to the compositional bias in different estimators, step sizes, learning rate

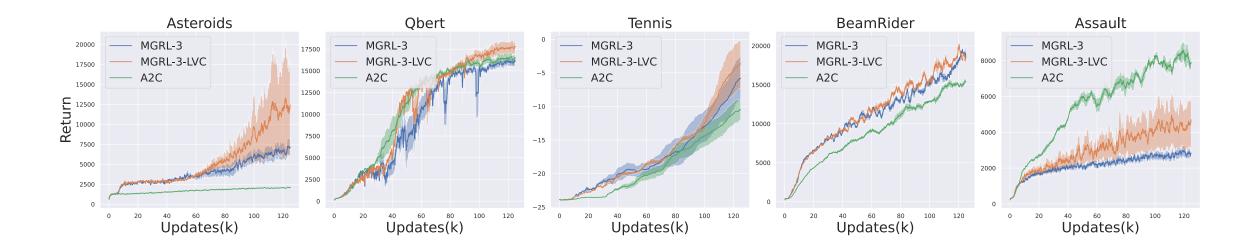
Ablation study of meta-gradient bias due to the Hessian bias in different learning rates and Hessian bias coefficients

• Iterated Prisoner Dilemma (IPD)



Experiment result of LOLA-DiCE over 10 seeds

• Atari 2600



Experimental results on Atari games over 5 random seeds.

Code Reference

- TorchOpt: https://github.com/metaopt/torchopt
- OpTree:https://github.com/metaopt/optree
- https://github.com/alexis-jacq/LOLA_DiCE
- Code Release:
- https://github.com/Benjamin-eecs/Theoretical-GMRL

Thank you!

benjaminliu.eecs@gmail.com xidong.feng.20@ucl.ac.uk yaodong.yang@pku.edu.cn