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INPUT OUTPUT

? Human decision 
making relies on 
reasoning and 
causal inference.
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In this work, we focus on causality detection from time-series data 
(without assumption of any causal model) and use a recently 
proposed brain inspired learning algorithm namely Neurochaos 
Learning (NL) [1,2].

4

[1] N.B. H, Nagaraj N. When Noise meets Chaos: Stochastic Resonance in Neurochaos Learning. Neural Networks. 2021;143:425-435. 
doi:10.1016/j.neunet.2021.06.025
[2] Balakrishnan H, Kathpalia A, Saha S, Nagaraj N. ChaosNet: A chaos based artificial neural network architecture for classification. Chaos: 
An Interdisciplinary Journal of Nonlinear Science. 2019;29(11):113125. doi:10.1063/1.5120831



Objectives of the Study

● O1: The efficacy of Neurochaos Learning (NL) in cause-effect classification 
and compare the same with Deep Neural Network (DNN), 1D Convolutional 
Neural Network (1D CNN), and Long Short Term Memory (LSTM). 

● O2: Does success in cause-effect classification imply preservation of 
causality? 

● O3: Can NL use a transfer learning framework for cause-effect 
classification?
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Datasets

● Coupled Autoregressive (AR) processes
● Coupled 1D Chaotic maps in Master-Slave configuration
● Predator (Didinium Nasutum) and Prey (Paramecium Aurelia) real world data 

[3].

Each of the data instances are of length 2000, after removing the initial 500 samples 
(transients) from the time series.

6
[3]. Brendan G Veilleux. The analysis of a predatory interaction between didinium and paramecium. Master’s thesis. 
University of Alberta, Edmondton, 1976.



Experiments and Discussions
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Coupled AR 
Processes
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Coupled AR Processes
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Coupled Chaotic Map 
in Master- Slave 
Configuration
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Predator - Prey Dataset
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NL preserves causality whereas DL fails.



Conclusions
● Neurochaos Learning (ChaosNet) outperforms a five layer deep learning 

architecture and LSTM in the case of both chaotic tent maps and AR 
processes.

● In the case of AR processes, 1D CNN performs better than ChaosNet for 
several values of coupling. Whereas, in the case of coupled chaotic skew-tent 
map, ChaosNet outperforms all the other methods including 1D CNN.

● Features extracted from DNN, 1D CNN and LSTM failed to preserve the 
cause-effect relationship as measured by GC and CCC for coupled AR 
processes and skew tent map master slave system.

● Features extracted from the input layer of NL preserves the cause-effect 
relationship as measured by GC and CCC.
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