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Introduction

Artificial Intelligence

Machine Learning

Deep
Learning

Hidden

Input

Output

Issues with
trustworthiness
and
interpretability.



OUTPUT

Human decision
making relies on
reasoning and
causal inference.



In this work, we focus on causality detection from time-series data
(without assumption of any causal model) and use a recently
proposed brain inspired learning algorithm namely Neurochaos

Learning (NL) [1,2].
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Obijectives of the Study

O1: The efficacy of Neurochaos Learning (NL) in cause-effect classification
and compare the same with Deep Neural Network (DNN), 1D Convolutional
Neural Network (1D CNN), and Long Short Term Memory (LSTM).

O2: Does success in cause-effect classification imply preservation of
causality?

O3: Can NL use a transfer learning framework for cause-effect
classification?



Datasets

e Coupled Autoregressive (AR) processes
e Coupled 1D Chaotic maps in Master-Slave configuration
e Predator (Didinium Nasutum) and Prey (Paramecium Aurelia) real world data

[3].

Table 1: Train-Test distribution for the simulated datasets.

Class Traindata | Testdata
Class-0 801 199
Class-1 799 201

Total 1600 400

Each of the data instances are of length 2000, after removing the initial 500 samples
(transients) from the time series.

[3]. Brendan G Veilleux. The analysis of a predatory interaction between didinium and paramecium. Master’s thesis.
University of Alberta, Edmondton, 1976.



Experiments and Discussions
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Figure S1: (a) Performance comparison of ChaosNet with five layer DNN, 1D CNN, and LSTM for the classification of
cause-effect for timeseries data generated from coupled AR processes. (b) GC vs Coupling Coefficient for the firing time
feature (ChaosFEX feature) extracted from the input layer of NL. (c) GC vs Coupling Coefficient for features extracted
from the second last layer of 1D CNN architecture. (d) GC vs Coupling Coefficient for features extracted from the segond
last layer of LSTM architecture.



Coupled AR Processes
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Figure 1: (a) GC vs. coupling coefficient for the firing time feature extracted from the coupled AR

processes. The ChaosFEX settings are ¢ = 0.78, b = 0.499, and € = 0.171. The GC F-statistic is

computed from 50 trials. (b) GC vs. coupling coefficient for DL features extracted from the fourth
hidden layer of a five layer neural network. The GC F-statistic is computed from 50 trials.



Coupled Chaotic Map

in Master- Slave
Configuration
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Figure 2: (a) Performance comparison of ChaosNet and five layer DNN for the classification of
cause-effect for 1D coupled skew tent map in master-slave configuration. (b) CCC vs Coupling
Coefficient for the raw data corresponding to 1D chaotic skew tent map in master-slave configuration.
(¢) CCC vs Coupling Coefficient for firing time (ChaosFEX feature) corresponding to 1D chaotic
coupled skew tent maps in master-slave configuration. (d) CCC vs Coupling Coefficient for features
extracted from the second last layer of five layer deep neural network corresponding to 1D chaotic
coupled skew tent maps in master-slave configuration. 10



Predator - Prey Dataset

Table 2: Cause-effect preservation of the prey-predator real world data using CCC.

NL preserves causality whereas DL fails.

Class CCC (rawdata) | CCC (NL, firing time) | _— DL~
Predator — Prey 0.1160 0.0484 (Unable to compute)
Prey — Predator -0.0210 0.0050 \Unable to computg/

v
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Conclusions

e Neurochaos Learning (ChaosNet) outperforms a five layer deep learning
architecture and LSTM in the case of both chaotic tent maps and AR
processes.

e Inthe case of AR processes, 1D CNN performs better than ChaosNet for
several values of coupling. Whereas, in the case of coupled chaotic skew-tent
map, ChaosNet outperforms all the other methods including 1D CNN.

e Features extracted from DNN, 1D CNN and LSTM failed to preserve the
cause-effect relationship as measured by GC and CCC for coupled AR
processes and skew tent map master slave system.

e Features extracted from the input layer of NL preserves the cause-effect
relationship as measured by GC and CCC.
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