S³GC: Scalable Self-Supervised Graph Clustering

Devvrit*¹, Aditya Sinha^{†2}, Inderjit Dhillon*[‡], Prateek Jain[†]

*University of Texas at Austin [†]Google Research, India [‡]Google

October, 2022

¹work done while the author was an intern at Google Research

²Now at University of Illinois, Urbana-Champaign

 \rightarrow Graphs are a commonplace data structures.

 \rightarrow Usually nodes are often equipped with vector embeddings from different sources.

 \rightarrow Example: ogbn-arxiv - a citation graph where nodes can be equipped with embeddings of the title/content of the papers.

Problem

Given a graph G with node set V, edges E, and node attributes $X \in \mathbb{R}^{n \times d}$, aim is to cluster the nodes into k clusters.

This problem of graph clustering with side information has been extensively studied in the literature [1]

Existing solutions suffer from one of the following 3 limitations:

- The clustering algorithm is highly reliant on either the graph structure or the node attributes.
- Interaction of the algorithm doesn't explicitly promote clusterability.
- Solution The method isn't scalable to realistic web-scale datasets.

Consists of 3 components:

- A scalable encoder that captures both node as well as graph structure information.
- A contrastive loss function that ensures that the embedding of a node is close to "near-by" nodes, thus learning clusterable embeddings.
- Section 3.1 Control of the section of the sectio

Given an adjacency matrix $A \in \mathbb{R}^{n \times n}$, define k-hop Diffusion matrix as

$$S_k = \sum_{i=0}^k A^i \tag{1}$$

Then, the encoder is defined as:

$$\overline{X} = (PReLU(AX\theta) + PReLU(S_kX\theta') + \mathcal{I})$$
(2)

where *PReLU* is the activation function, θ and θ' are learnable parameters, and \mathcal{I} is a learnable $\mathbb{R}^{n \times d}$ matrix.

 $\rightarrow \mathcal{I}$ supports in learning graph structure information. While $PReLU(AX\theta)$ and $PReLU(S_kX\theta')$ are 1-layer Graph Convolutional Neural Network that capture node attributes information.

 \rightarrow Given a pivot node *u*, the random walk sampler outputs all the distinct points seen in a random walk of length *l* started at *u*.

 \rightarrow These points act as "positive samples" to the node *u*, later used by contrastive loss. Negative samples are generated by picking *r* distinct random nodes in the graph.

We use a SimCLR style loss function where positive and negative nodes are generated by the random walk sampler. Let p_u^+ be the set of positive nodes and p_u^- be the set of negative nodes. Then, the loss for node u is calculated as:

$$SimCLR_Loss = \frac{\sum_{v \in p_u^+} exp(sim(u, v))}{\sum_{v \in p_u^+} exp(sim(u, v)) + \sum_{v' \in p_u^-} exp(sim(u, v'))}$$
(3)

where sim is some similarity function, for example inner product $sim(u, v) = \frac{u^T v}{\|u\| \|v\|}$

Overall Algorithm

Figure: S³GC Algorithn

Table: Comparison of clustering obtained by our method to several state-of-the-art methods. We use the official implementations provided by the authors for all the methods. * denotes that the method ran Out of Memory (OOM) while trying to run the experiments on the hardware. - indicates that the method did not converge.

Dataset	Metric	Baseline									Ours
	metric	k-means	MinCutPool	METIS	Node2vec	DGI	DMoN	GRACE	BGRL	MVGRL	S ³ GC
Pubmed	NMI	0.314	0.214	0.297	0.288	0.322	0.257	0.308	0.315	0.345	0.333
ogbn-arxiv	NMI	0.216	0.380	0.345	0.406	0.412	0.356	*	0.321	*	0.463
Reddit	NMI	0.114	-	0.727	0.792	0.306	0.628	*	*	*	0.807
ogbn-products	NMI	0.273	0.430	0.468	0.489	0.467	0.428	*	*	*	0.536

Table: Results of comparison of the embeddings generated by our method as compared to different scalable methods on ogbn-papers100M with 111M nodes and 1.6B edges.

Method	ogbn-papers100M								
	Accuracy	NMI	CS	F1	ARI				
k-means	0.144	0.368	0.342	0.101	0.074				
Node2vec	0.175	0.380	0.352	0.099	0.112				
DGI	0.151	0.416	0.386	0.111	0.096				
S ³ GC (Ours)	0.173	0.453	0.430	0.118	0.110				

- We introduced S³GC, a new method for scalable graph clustering with node feature side-information.
- Our choice of the encoder, positive and negative node samples, and the loss function - makes our method scalable as well as generate clusterable embeddings.
- S³GC is able to scale to graphs with 100M nodes while still ensuring SOTA clustering performance.

 Yuchen Zhao and Philip S Yu. On graph stream clustering with side information. In *Proceedings of the 2013 SIAM International Conference on Data Mining*, pages 139–150. SIAM, 2013.