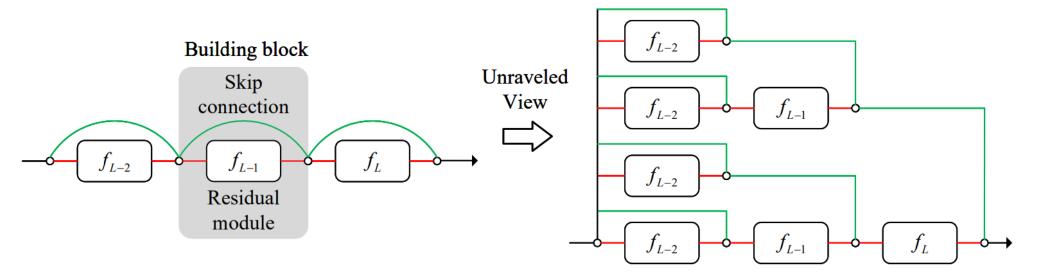


Stimulative Training of Residual Networks: A Social Psychology Perspective of Loafing

Main Problems

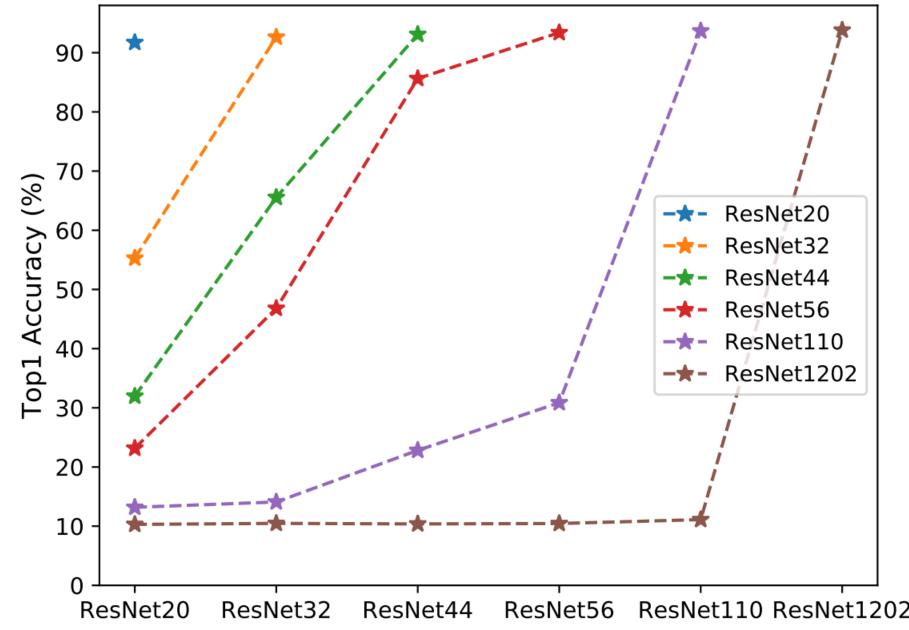
>Unraveled view of residual network



 \succ Figure 1: The unraveled view of residual network.

≻As residual networks can be viewed as ensembles of relatively shallow networks (i.e., unraveled view) in prior works, we also start from such view and consider that the final performance of a residual network is codetermined by a group of sub-networks.

> The problem of network loafing



Different Networks from ResNetx

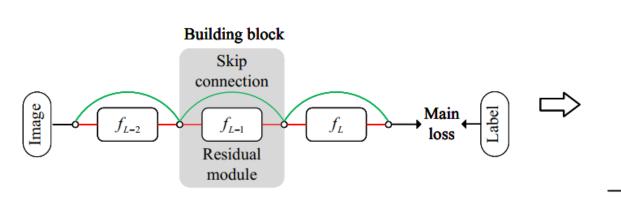
Figure 2: Different residual networks invariably suffer from the problem of network loafing (i.e., the subnets of given residual network perform significantly worse than the same architecture trained alone), and deeper residual network tends to have more serious loafing problem. The horizontal axis means the sampled different sub-networks from ResNetx.

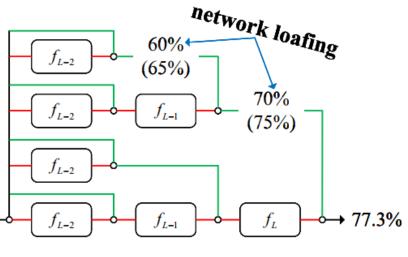
Peng Ye¹, Shengji Tang¹, Baopu Li², Tao Chen¹, Wanli Ouyang³

¹School of Information Science and Technology, Fudan University ²Oracle Health and AI, USA, ³The University of Sydney, SenseTime Computer Vision Group, Australia, and Shanghai AI Laboratory

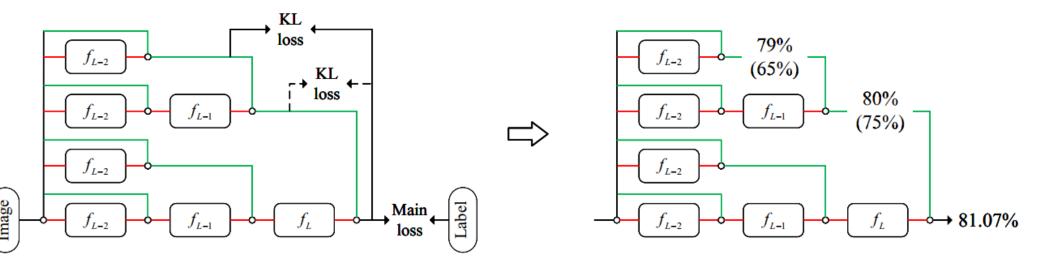
Approach

>Stimulative training framework





(a) Common training scheme suffers from severe network loafing problem



(b) Stimulative training scheme can relieve network loafing and improve the performance

Figure 3: Illustration of common and stimulative training schemes. Stimulative training can relieve the network loafing problem, and improve the performance of a given residual network and all of its sub-networks.

>Ordered Residual Sampling

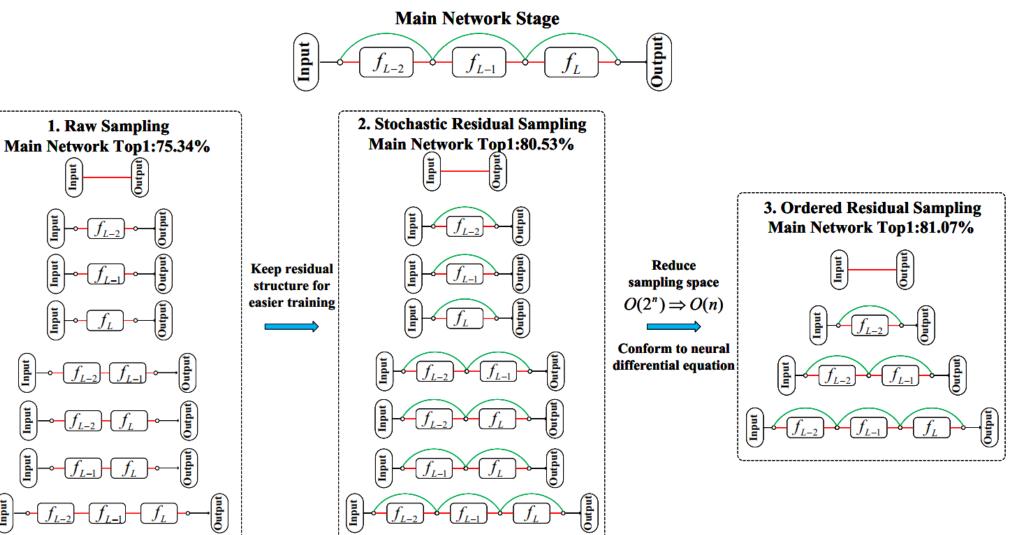
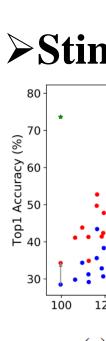
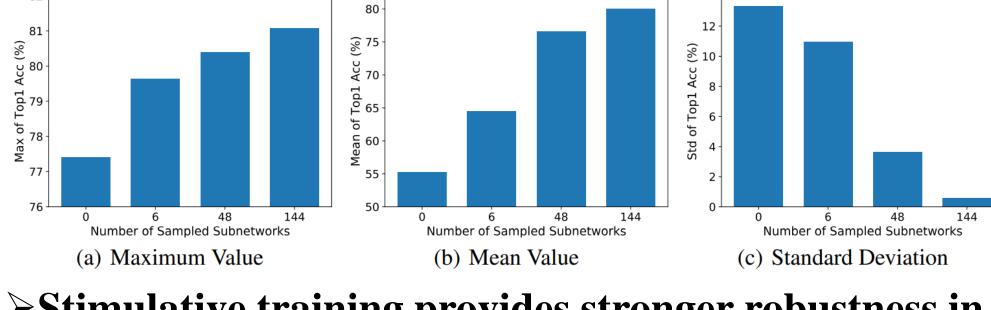
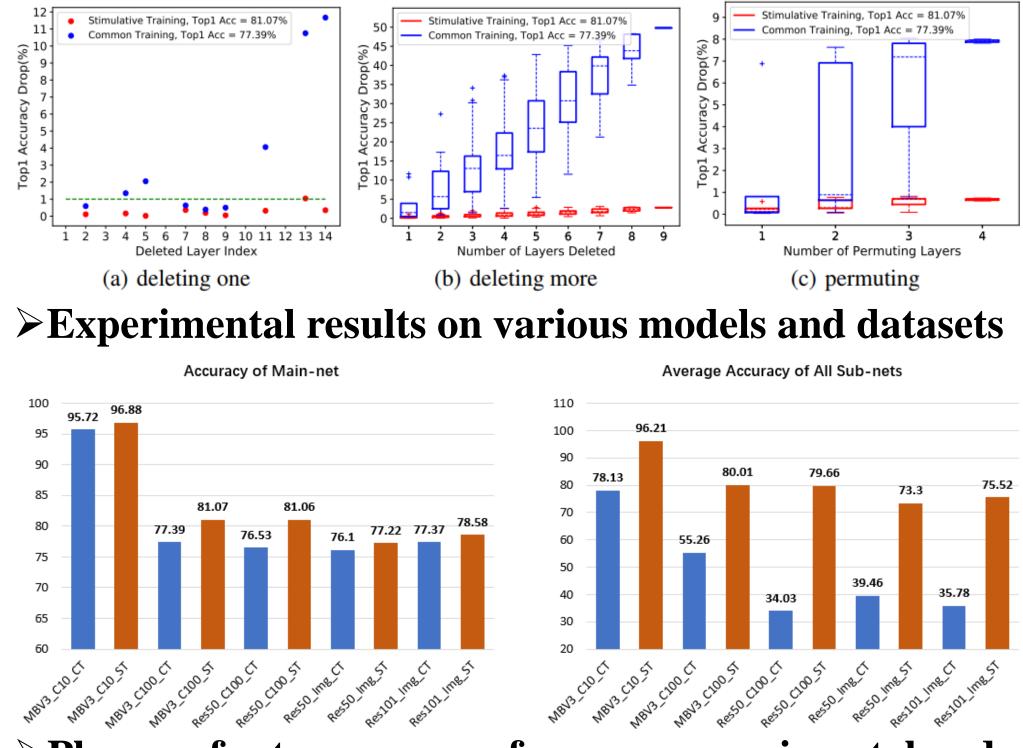


Figure 4: The ordered residual sampling rule, consisting of keeping residual structure and ordered sampling, can facilitate stimulative training effectively and efficiently.

Code: https://github.com/Sunshine-Ye/NIPS22-ST

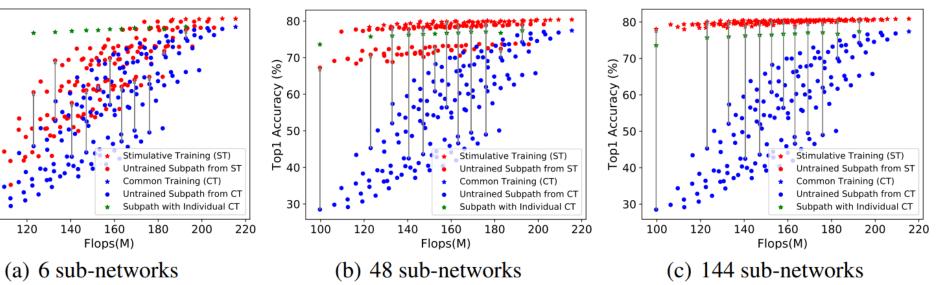






Experimental Results

Stimulative training can alleviate network loafing



Stimulative training show the best statistical characteristics of the performance of all residual sub-networks

Stimulative training provides stronger robustness in resisting various network destruction operations

Please refer to our paper for more experimental and theoretical analysis

>Comprehensive comparisons among different methods

- Method CT+layer CT+stage Self distil Stochastic ST

> The loafing problem also exists on DenseNet networks

- Main-net DenseNet DenseNe DenseNet

Main-net\Sub-net	DenseNet121	DenseNet169	DenseNet201	DenseNet264
DenseNet121	78.84	43.64	31.51	10.01
DenseNet169	-	79.64	70.78	48.41
DenseNet201	-	-	79.77	62.29
DenseNet264	-	-	-	79.81

Discussions&Limitations



More Discussions

> Table 1: Comprehensive comparisons among different methods, including common training (CT), stimulative training (ST), common training (CT) with layer/stage supervision, Self-Distillation and Stochastic Depth

	Time	Memory	Main(%)	All(%)
	16.91h	3291MiB	77.39	55.26±13.37
r supervision	23.3h	7193MiB	78.77	59.18±11.12
e supervision	19.3h	5197MiB	78.59	54.82±13.31
llation	26.8h	3887MiB	79.59	50.39±14.22
c depth	16.9h	3291MiB	78.43	70.72±3.76
	24.08h	3291MiB	81.07	80.01±0.59

> Table 2: Different DenseNet networks trained on ImageNet invariably suffer from the problem of network loafing

t\Sub-net	DenseNet121	DenseNet169	DenseNet201
et121	74.86	20.91	11.57
et169	-	76.46	51.18
et201	-	-	77.44

≻ Table 3: Different DenseNet networks trained on CIFAR100 invariably suffer from the problem of network loafing

► Residual structure is widely applied in numerous different types of models including **DenseNet** and **transformer**. It will be of vital value to study whether the loafing problem exists in these models and explore the proper method to solve this problem.

The proposed method suffers from about **1.4 times** of computation cost of the original training to get better performance and robustness. As the first research of network loafing problem, the proposed method is a positive pioneer-like exploration. We believe designing a more efficient method to solve the loafing problem is a worthy research direction in the future.