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Different graph augmentation strategies

» Heuristic based

* e.g. Node or edge dropping, Feature masking, Diffusion matrix

» Learning based

* e.g. InfoMin principle, Disentanglement, Adversarial training

Experiments

Augmem‘aﬁonv 1

T.N. Kipf, and M. Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
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Rethinking Graph Augmentation

» What information should we preserve or discard in an augmented graph?
» Are there some general rules across different graph augmentation strategies?

» How to use those general rules to validate and improve the current GCL methods?
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Topological Augmentation Graph spectrum changes

Explore the effectiveness of augmentations from the graph spectral domain.
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Preliminaries
» Symmetric normalized graph Laplacian
L=I,-A=D 3(D-A)D :=UAU"
where A = diag(A1,...,An) U =[u],...,ul] € RV*N

» Low-frequency & High-frequency components

Reorder 0 < A\ < - < Ay < 2
Low-frequency components  Frz = {A1,..., A\ n/2)}

High-frequency components F ={A|nN/2]+1s---s AN}

» Graph spectrum

¢ (4): Amplitudes of different frequency components, indicating which parts

of frequency are enhanced or weakened.

Conclusion
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& An Experimental Investigation

SpCo Experiments Conclusion

» Aim: In GCL, investigate which part of frequencies should be contrasted.

» Case study model

Adjacency A
% /) —p GCN
v
Shared
Generated V
5%
7 e iy GCN

InfoNCE loss

» Generating V

/
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Augmentation in F_ Augmentation in

Augmenting 20% in JF .
Usug + o+ ”U-E*Nfzug.z*nrjz + ”NKZHJTV,/;: +ootunuy

Augmenting 20% in JF7,

urug +-oo+ ”Nﬂ“},’z 1 “(N+1),f2”{TN+1)fz + o+ UoTN Uy

Set 4; = 1, only consider the effect of eigenspace u;u;
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Observation & Results
- Low High - Low High - Low High - Low High
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» Observation 1 --- Purple dash line

« The performance achieves the best only when the lowest part of F2 is maintained

> Observation 2 --- Brown dash line

« With more high-frequency information in /7 added, the performance generally rises
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Observation & Results

<

(—V—A)
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Maintain the lowest frequency in V

Amplitude

=> Difference in F becomes smaller

Add more high frequency in V

=> Difference in F3; becomes larger

Frequency

b The GAME rule

The General Graph Augmentation Rule

Given two random augmentations V; and V5, their graph spectrums are ¢y, (\) and ¢y, (A).
Then, ¥ A, € [1,2] and A, € [0,1], V3 and V5 are an effective pair of graph augmentations if
the following condition is satisfied: . l\ :

. N Y

IﬁbVl(’\m) - ‘.sz(’\m)I > I‘.bVl(’\n) - ¢Vz(/\n)|'

We define such pair of augmentations as optimal contrastive pair.

Amplitude g

Frequency
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Analysis of The General Graph Augmentation Rule
» Experimental analysis 1 --- Contrast between A and 9 existing augmentations
1 . \
: 1 PPR Matrix ° 1 - Heat Matrix © 0015L\Djs_taj
: : 3 |~ s E
5. — Laplacian Matrix —= = | R e - B o = o | VG RL
g g £ | 3
%'1 g ’/// : : 1 2 _ 1 "0‘01: 1 2
E . ///-/ : A) Frequency(A) Y(A)
| PageRank Eigenvector Degree
1 2 ! o : 2 1
" Frequency() .2 o\ | =L 3 °\\ GCA
2 -3 A " 3 w £ |
1 —— Adjacency Matrix | ; - 3 ) 2 ] 5 : ]
§ \\\\\ : Frequency(A) Frequency(A) Frequency(A)
% 0 \\\ 1 i Node Dropping ; Subgraph § l Edge Pertubation
£ e 1B E 3™
<, ~] ? o E S~ E‘ | GraphCL
’ Frequtency()\) 2 : .a — .c —— 2 .a — 3
| Frequency(A) Frequency(A) Frequency(A)
Methods GraphCL GCA T—  MVGRL
Type Subgraph | Node dropping | Edge perturbation | Degree | PageRank | Eigenvectof PPR Heat
Results | 34.943.5 29.8+2.3 37.7+4.4 40.24+4.1 | 38.5+5.0 42.14+4.9 . 58.0+1.6 | 49.9+4.2

\
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Analysis of The General Graph Augmentation Rule

> Experimental analysis 2 --- Contrast between A & A , A & A%, A% & A?

2

[N

Datasets AL A /l/ A& Az\l A% & A*

Cora 37.0+6.1/| 53.7+3.2 |\ 33.34+2.1
Citeseer 354439\ | 44.7+5.0 || 35.844.1
BlogCatalog | 50.6+3.2\| 63.1+4.6 || 56.2+2.1
Flickr 26.6+2.6 \33.712.3/ 282+1.6

Amplitude

Frequency
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Analysis of The General Graph Augmentation Rule

» Theoretical analysis --- Why does GAME rule work?

Theorem 1. (Contrastive Invariance) Given adjacency matrix A and the generated augmentation
V, the amplitudes of i-th frequency of A and V are \; and ~y;, respectively. With the optimization of

InfoNCE loss L1y foNCE, the following upper bound is established.:

Linfoncr < X 2.0 [2 — (\i — %)2] ;

where 0; is an adaptive weight of the ith term.

O Interpretation

« We find a upper bound for INfoNCE loss.
« Model optimization = Upper bound rising = larger 6; attachs to smaller (A; — v;)?

—> capture invariance between contrasted views
The GAME rule emphasizes small difference in low-frequency part, so makes model

capture low-frequency information.
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SpCo Experiments

Spectral Graph Contrastive Learning --- A friendly plug-in

Conclusion

» Target --- Learn a transformation 4,4, construct optimal contrastive pair A and A_

Amplitude

GCL methods

AugmentationV 1

Frequency

Augmentation V:

Frequency

E> Frequency
|

SpCo + GCL

Original Graph A AugmentationV 1

Frequency

L\.A\'

New Graph A_ Augmentation V;

-

Frequency Frequency

Target Model
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Spectral Graph Contrastive Learning --- A friendly plug-in
» Target --- Learn a transformation 4,4, construct optimal contrastive pair A and A_

» Optimization objective (maximization)

J=<C, Aay >*+ cH(Aay) +< f.Aa4l, —a>+<g,Aj, 1, b>

"

Matching Term  Entropy Reg. Lagrange Constraint Conditions
* AA=AprL —Aa_  Entropy regularization
e <U,V>= Zij Ui Vi; => Expose more edges to optimization
e C =Ug()\)UT  Lagrange constraint conditions

e g(A): monotone increasing => The row and column sums meet

distribution a and b
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Spectral Graph Contrastive Learning --- A friendly plug-in
» Target --- Learn a transformation 4,4, construct optimal contrastive pair A and A_

» Optimization objective (maximization)

J=<C,Aay >>+ cH(Apay) +< f.Ax4l, —a>+<g.A), 1, b>

"

T W e
Matching Term  Entropy Reg. Lagrange Constraint Conditions

» Solution
Aat = diag(u)exp (2 < C,A, > C /¢)diag(v) =U4 KV,

@ matrix scaling u * (K4 v) = a and v * (Klu) =b ﬁ

Sinkhorn’s lteration: 4+ =q / (K+v(i)) and (D — b/ (Kjru(lﬂ))
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Spectral Graph Contrastive Learning --- A friendly plug-in
» Target --- Learn a transformation 4,4, construct optimal contrastive pair A and A_

» Optimization objective (maximization)

J=<C,Aay >>+ cH(Apay) +< f.Ax4l, —a>+<g.A), 1, b>

"

T W e
Matching Term  Entropy Reg. Lagrange Constraint Conditions

» Solution
Aat = diag(u)exp (2 < C,A, > C /¢)diag(v) =U4 KV,
Aa_ = diag(u')exp (-2 < C,A%_ >C /e)diag(v') =U_K_V_

Aa=Apar —Aa_
A_=A+n-SxAxy



Overview The GAME rule SpCo Experiments Conclusion

1

Experiments
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Datasets. BaselLines
01 I
Dataset | Nodes Edges Classes Features Training  Validation Test . CI assic al GNN met h 0 d S
Cora 2708 10556 7 1433 35/70/140 500 1000
Citeseer 3327 9228 6 3703 30/60/120 500 1000
BlogCatalog | 5196 343486 6 8189 30/60/120 1000 1000 G C N ! GAT
Flickr 7575 479476 9 12047  45/90/180 1000 1000
Pubmed 19717 88651 3 500 15/30/60 500 1000 GCL models

DGI, MVGRL, GRACE
GCA, GraphCL, CCA-SSG

Tasks.
» Node classification

» Visualization of graph spectrum
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Node classification

SpCo

Experiments

Base model: DGI (BCE loss), GRACE (InfoNCE loss), CCA-SSG (CCA loss)

Conclusion

Datasets |Metrics| GCN GAT DGI DGI+SpCo|MVGRL | GRACE GRACE+SpCo|, GCA |GraphCL|CCA-SSG CCA+SpCo
Cora Ma-F1 [79.6+£0.7|81.3+£0.3[80.4+0.7 81.1+0.5 |81.5+0.5/79.2+1.0  80.3%0.8 79.9+1.1/80.7+£0.9 | 82.9+0.8 83.6+0.4
Mi-F1 |80.7+£0.6|82.3+0.2(82.0+0.5 82.8+0.7 |82.8+0.4|80.0£1.0  81.2+0.9 81.1+1.0| 82.3£0.9 | 83.6+09 84.3+x04
Citescer Ma-F1 [68.1+£0.5|67.5+£0.2{67.7+0.9 68.3+0.5 |66.8+0.7|65.1+1.2 65.1+0.8 62.8+1.3|67.8+1.0 | 67.9+1.0 68.5+1.0
Mi-F1 |70.940.5(72.0£0.9(71.7+£0.8 72.4+0.5 |72.5+0.5|68.7+1.1 69.4+1.0 65.9+1.0| 71.9£0.9 | 73.1+0.7  73.6%1.1
BlogCatalog Ma-F1 [71.241.2|67.6+£2.2|68.2+1.3 71.5+0.8 |80.3+3.6|67.7+1.2 68.2+0.4 71.7£0.4| 63.942.1 | 72.0+0.5 72.8+0.3
Mi-F1 |72.1£1.3|68.3+2.2|68.8+1.4 72.3+0.9 |80.9+3.6|68.5+1.3 69.4+1.3 72.7+0.5|64.6+2.1 | 73.0+£0.5  73.7+0.3
Flicke Ma-F1 [48.9+1.6(|35.0+£0.8(31.2+1.6 33.740.7 |31.2+2.9|35.7+1.3 36.3x1.4  |41.2+0.5/32.1+1.1| 37.0+1.1  38.7+0.6
Mi-F1 |50.2+1.2|37.1+£0.3|33.0£1.6 35.240.7 |33.4+3.0(37.3£1.0  38.1%#1.3 |42.240.6/34.5£09| 39.3x09 40.4+0.4
PubMed Ma-F1 |78.54£0.3|77.4+0.2{76.8+0.9 77.6+0.6 |79.8+0.4|80.0+0.7 80.3+0.3 80.8+0.6|77.0+0.4 | 80.7+0.6  81.3+0.3
Mi-F1 |78.940.3|77.840.2(76.7+0.9 77.4+0.5 |79.7+0.3|79.9+0.7 80.7+0.2 81.4+0.6|76.8+0.5 | 81.0+0.6  81.5+0.4

SpCo can generally improve performances compared with base models
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SpCo

Visualization of graph spectrum

Spectral Coefficient

Eigenvalue (A)
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Experiments

Spectral Coefficient

Spectral Coefficient

Vo — A
v, — A
1 b
0 \
1
0 1 2

Eigenvalue (A)

(c) CCA-SSG: Cora

Vs — A
Vi — A

Eigenvalue (A)

(c) CCA-SSG: Citeseer

]

Conclusion

A and A_ is optimal contrastive pair, so boosting the final results.
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Conclusion

Augmentation strategies & Graph spectrum.

Reveal the general graph augmentation rule (The GAME rule)

Explain why GCL works (Contrastive Invariance Theorem)

Optimal contrastive pair & SpCo.
Propose a novel concept -- optimal contrastive pair

Theoretically derive a general GCL framework -- SpCo

Extensive experiments.
DGI/GRACE/CCA-SSG + SpCo, validate the effectiveness of SpCo
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Thank you!

Contact: Our official account:

Nian Liu, nianliu@bupt.edu.cn B EZAAEF S

More Information:

http://www.shichuan.org/
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