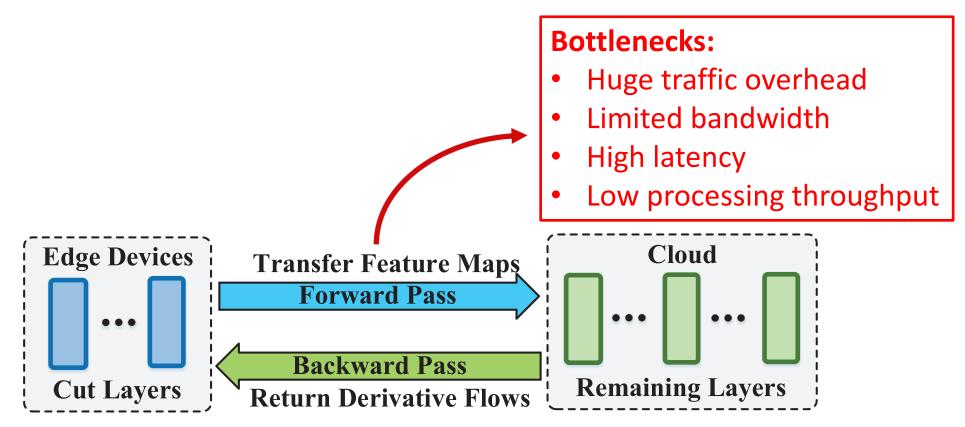
Hierarchical Channel-spatial Encoding for Communication-efficient Collaborative Learning

Qihua Zhou¹, Song Guo¹, Yi Liu¹, Jie Zhang¹, Jiewei Zhang¹, Tao Guo¹, Zhenda Xu¹, Xun Liu¹, Zhihao Qu²

¹The Hong Kong Polytechnic University, ²Hohai University

Rise of Collaborative Learning (CL)

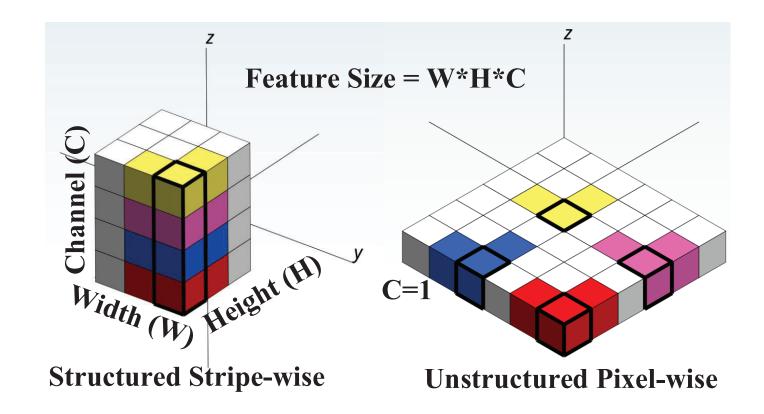


Question: how to eliminate the performance bottleneck? **Solution:** improve communication efficiency via latent feature encoding.

Limitations of Conventional Encoding Methods

Inspection of previous methods:

- Compress features at pixel level (spatial-wise).
- Ignore the characteristics of feature structure (channel-wise).
- → Why not conduct vector encoding (stripe-wise) for higher compression ratios?



Characteristics of CNN Latent Feature

Observation:

 Output channels generate quite different features when the corresponding filters are orthogonal to each other.

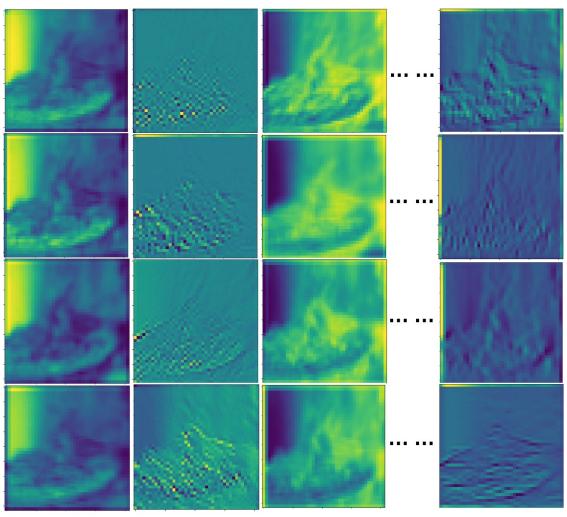
Challenge:

 Simply adopting product or vector quantization along channel dimension does not work well.

Inspiration:

 Grouping the feature maps based on their channel-level similarity can better capture the feature redundancy.

Visualization of Latent Features:



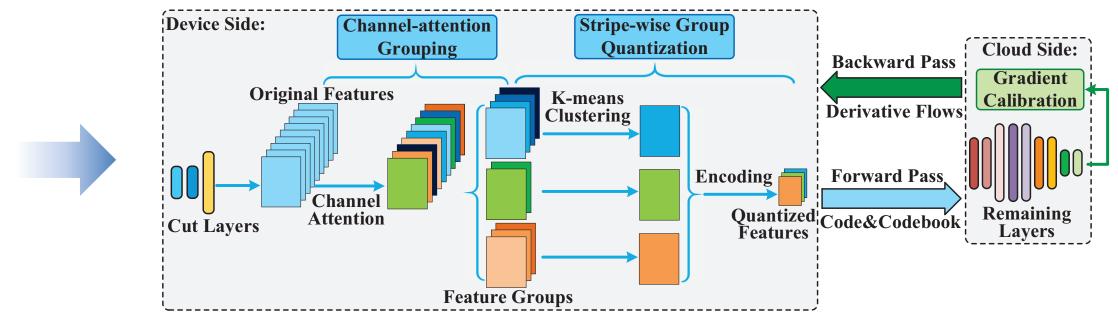
Group 1 Group 2 Group 3 … … Group N

Bridge Gap: Hierarchical Channel-spatial Encoding

Key:

- Capturing such channel-dimension structured information is the key to fundamentally compress feature size.
- It is often omitted by conventional quantization methods designed for parameters, activations or gradients.
- As to each group, we need to find a collection of representative pixels, each of which can replace other pixels similar to it.

Framework Overview:



Core Steps of Strip-wise Group Quantization (SGQ)

Two-step Compression:

- Feature Discretization.
- Pixel Encoding.

Accuracy Preservation:

- Proper grouping: channel-attention grouping block.
- Guarantee model convergence: gradient calibration.

Traffic Analysis:

• Achieve a much higher compression ratio over existing methods.

$$S_{SGQ} = \sum_{i=1}^{G} \left(\underbrace{n \cdot WH}_{feature} + \underbrace{32 \cdot 2^{n} \cdot C_{i}}_{codebook}\right)$$

$$S_{UQ} = n \cdot WH \cdot \sum_{i=1}^{G} C_i + \underbrace{32 \cdot 2^n}_{codebook}$$

feature

$$\frac{n \cdot WH}{2^{n+5}} > \underbrace{\frac{\sum_{i=1}^{G} C_i - 1}{\sum_{i=1}^{G} C_i - G}}_{\approx 1}$$

Theoretical Convergence Analysis

Convergence order:

$$\frac{1}{T} \sum_{t=0}^{T-1} E \|\nabla f(\boldsymbol{w}_t)\|_2^2 \preceq O(\frac{1}{\sqrt{NT}})$$

Effectiveness :

 SGQ holds the same order of convergence rate as the non-quantized distributed SGD algorithm and exhibits the linear speedup property with respect to the number of devices.

Summary:

• Theoretical results demonstrate that our proposed algorithm is communicationefficient and scalable for the collaborative learning environment.

Evaluation Setup

Platforms

- HUAWEI Atlas 200 DK: Ascend 310 AI processor
- NVIDIA Jetson Nano: Quad-core ARM A57 @ 1.43 GHz
- Remote server: NVIDIA RTX 2080Ti server through 10GbE network

Benchmarks

- Model: AlexNet, VGG-11, ResNet-18/34, ShuffleNet-V2-1.0x/0.5x, MobileNet-V1
- Dataset: CIFAR-10/100 (CF), Fashion MNIST (FM), mini-ImageNet (MI), ImageNet-1K

Baselines

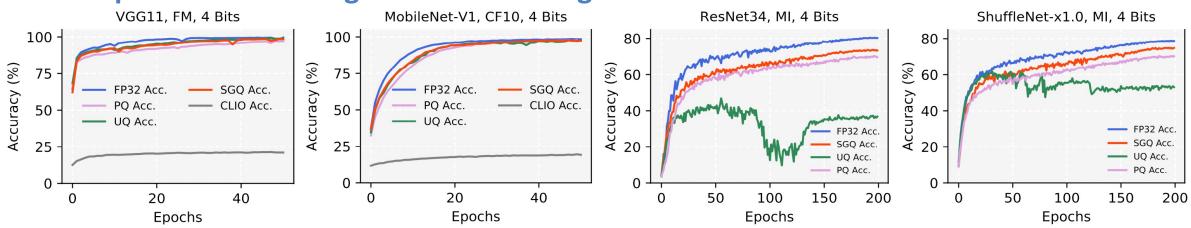
- Vanilla full-precision training (FP32)
- Uniform quantization (UQ)
- Product quantization (PQ)
- Progressive-slicing CLIO (Top-K)

HUAWEI Atlas 200 DK

NVIDIA Jetson Nano

Convergence Results

• Comparison of convergence curves using different benchmarks and baselines



• Summary of average model accuracy (%) using 4-bit compression, compared with FP32

Method	VGG11, FM	MobileNet-V1, CF10	ResNet34, MI	ShuffleNet-x1.0, MI
FP32 (Upper Bound)	97.55	94.74	80.31	78.73
UQ	95.12	92.41	36.89	53.15
PQ	95.94	92.67	69.61	70.16
CLIO	21.02	19.16	13.06	11.10
SGQ	96.57	93.45	74.37	74.86

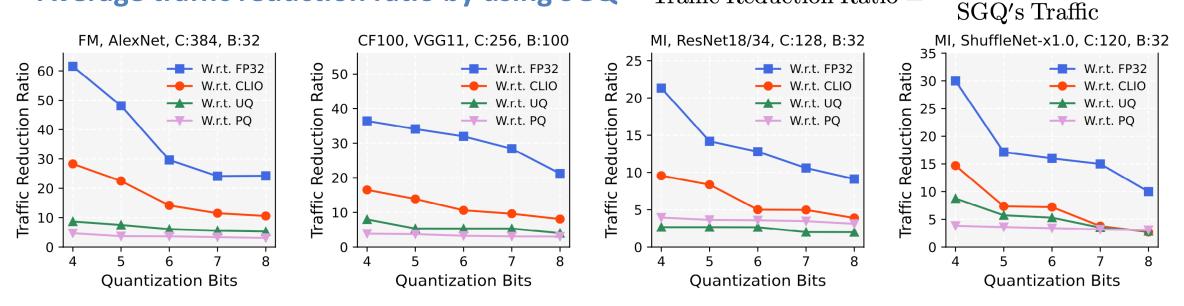
SGQ outperforms other baselines in different training configurations

Traffic Saving and Accuracy-size Trade-off

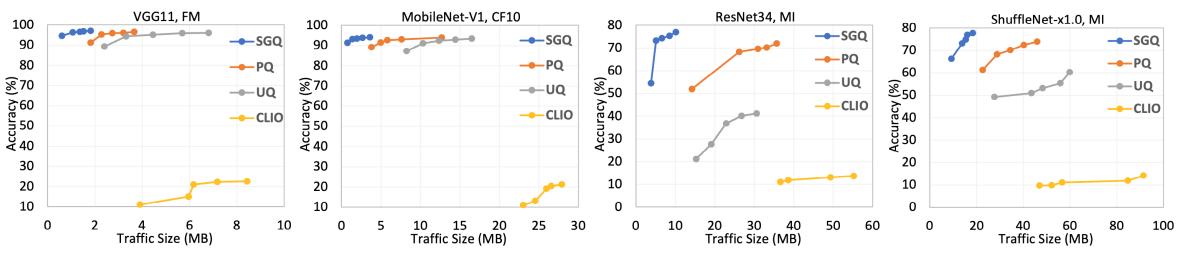
Average traffic reduction ratio by using SGQ

Baselines's Traffic

10



• SGQ outperforms existing methods in both model accuracy and traffic size



Conclusion

SGQ: Hierarchical Channel-spatial Encoding for Communication-efficient Collaborative Learning

- General feature compression method: effectively leverages the pixel similarity by reorganizing the features into groups based on channel significance.
- Efficient convergence order: hold the same convergence order as the Stochastic Gradient Descent method without quantization on feature maps.
- Scalable collaborative learning framework: enables model evolution on multiple edge devices and match the requirements of continuous analytics.
- SGQ provides an efficient accuracy-size trade-off for collaborative learning applications, while achieving higher traffic reduction ratio (up to 15.97×) and higher image processing speedup (up to 9.22×) over existing methods.

Thank you!

csqzhou@comp.polyu.edu.hk