FIRE Semantic Field of Words Represented as Non-Linear Functions

University of Tokyo **Xin Du** & Kumiko Tanaka-Ishii

Mathematical Representation of Words, Sentences

Embeddings in a space

Important basis of machine learning for natural language processing

Typically a linear vector space Word2Vec, BERT

- Similar words must be mapped to similar embeddings
- Compositionality
- Polysemy

Mathematical Representation of Words, Sentences

Important basis of Embeddings in a space machine learning for Typically a line natural language processing

Typically a linear vector space Word2Vec, BERT

- Similar words must be mapped to similar embeddings
- Compositionality linear quality $\vec{w}(coffee) + \vec{w}(cup) \approx \vec{w}(coffee cup)$
- Polysemy non-linear quality bank: financial bank vs. river bank

Adding polysemy often destroys compositionality

Research question:

How to incorporate linearity and non-linearity quality?

Comparison with Previous Work

D: dimension of representation

K: max number of polysemy

L: number of neural layers

method	Non- Contextual	Composi- tionality	Polysemy	Interpre- tability	N (# of parameters)	$\begin{array}{c} \text{Complexity} \\ \sin(w_1,w_2) \end{array}$
Vectoral representation						
Word2Vec (2013)	\checkmark	\checkmark	×	×	D	$\mathcal{O}(N)$
GloVe (2014)			×	×	D	$\mathcal{O}(N)$
BERT-large (2019)	×	\checkmark	\checkmark	×	D = 1024	high
Random-variable representations						
Word2Gauss/S (2014)) 🗸	×	×	×	D+1	$\mathcal{O}(N)$
Word2Gauss/D (2014	\rightarrow $$	×	×	×	2D	$\mathcal{O}(N)$
Word2GM/S (2017)		×	\checkmark	×	(D+2)K	$\mathcal{O}(KN)$
Word2GM/D (2017)	\checkmark	×	\checkmark	×	(2D+1)K	$\mathcal{O}(KN)$
Word2Cloud (2019)	\checkmark	×	\checkmark		K = 64	$\mathcal{O}(N^2)$
CMD (2020)	\checkmark	nonlinear	\checkmark	×	K = 200, 400	$O(N^2)$
Our semantic-field representations						
FIRE (2022)	\checkmark	\checkmark	$\sqrt{1}$	\checkmark	(2D+1)L+(D+1)K	$\mathcal{O}(KL)$
FIRE/m (2022)	\checkmark	\checkmark	\checkmark	\checkmark	(2D+1)L + DK	$\mathcal{O}(KL)$

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

FIRE : Representation of Words in a Functional Space "bank" $f_{bank}(s)$ and s_{bank} A space $w_i = [\mu_i, f_i(s)] \xrightarrow{\text{A space}}_{s \in S}$ 0.5 2.5 location function 0.0 2.0 Representing word context 1.5 1.0 -1.0measure neural network $S \to \mathbb{R}$ 0.5 -1.5 $\mu_i \equiv \delta(s_i) \quad s_i$ is the location of 0.0 -2.0word w_i -0.5 -2.5The interaction of w_i in the context of w_i -1.0 -3.0insurance, mortgage, loan, fee, salary, tax, payable, paid. south, ireland, region, northern, islands, africa, zealand. -1.5 -3.5 $\int f_i d\mu_i = f_i(s_i)$ bank -2.5 -2.0-1.5 -1.0-0.5-3.5 -3.00.0 0.5 Similarity function $sim(w_i, w_i) \equiv \int f_i d\mu_i + \int f_i d\mu_i$

Compositionality: Addition of f(s)Polysemy: Shape of f(s) + number of locations *K*

Simple and Natural Extentions

• Polysemy by *K* locations per word

$$\mu \equiv \sum_{k=1}^{K} m^{(k)} \delta(s^{(k)})$$
 $m^{(k)}$: weights (acquired by training)

Sentence Representation

$$\begin{split} \Gamma &= \begin{bmatrix} w_1, \dots, w_n \end{bmatrix} \qquad \begin{bmatrix} \mu_1, f_1(s) \end{bmatrix}, \dots, \begin{bmatrix} \mu_n, f_n(s) \end{bmatrix} \\ \mu &= \sum_{i=1}^n \gamma_i \mu_i, \quad f(s) = \sum_{i=1}^n \gamma_i f_i(s) \quad \gamma_i : \text{ weights (we use SIF)} \\ \gamma &= [\gamma_1, \dots, \gamma_n]^{\mathrm{T}} \qquad \gamma' = [\gamma'_1, \dots, \gamma'_{n'}]^{\mathrm{T}} \\ \sin(\Gamma, \Gamma') &= \int \left(\sum_{i=1}^n \gamma_i f_i \right) \mathrm{d} \left(\sum_{j=1}^{n'} \gamma'_j \mu'_j \right) + \int \left(\sum_{j=1}^{n'} \gamma'_j f'_j \right) \mathrm{d} \left(\sum_{i=1}^n \gamma_i \mu_i \right) = \gamma^{\mathrm{T}} \Sigma \gamma'_i \end{split}$$

Implementation of FIRE via Skipgram

$$\min \sum_{w_i, w_p, w_n} \sigma \left(-\sin(w_i, w_p) \right) + \sigma \left(\sin(w_i, w_n) \right)$$

$$\sigma : \text{ soft-plus function.}$$

- w_p positive samples : Words that co-occur with w_i
- w_n negative samples : Words that do not co-occur with w_i

 $w_i = [\mu_i, f_i(s)]$ train $f_i(s_i)$ and s_i for every w_i location function We used MLPlanar

Evaluation of FIRE

Monosemy: one cloud

Only FIRE could achieve this distinction

- 1. Word similarity benchmarks: FIRE competes well with SOTA
- 2. Sentence similarity benchmarks: less than BERT, compete with Word2Vec

65

60

55

50

0.2

3. Polysemy / monosemy classification

542 words ← Wordnet dictionary Classification: "polysemy" vs. "monosemy" Only FIRE achieved better than a chance level

Parameter eps of the DBSCAN

0.6

0.4

Word2Vec

Word2GM

Word2Gauss

BERT

FIRE

0.8

Thank you