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Mathematical Representation of Words, Sentences

Important basis of Embeddings in a space

machine learning for

. Typically a linear vector space
natural language processing

Word2Vec, BERT
« Similar words must be mapped to similar embeddings
« Compositionality linear quality

w(coffee) + w(cup) =~ w(coffee cup) W(S) + W(t)
* Polysemy non-linear quality .
bank: financial bank vs. river bank w(st

Adding polysemy often destroys compositionality .
w(s) W(t)
Research question:
How to incorporate linearity and non-linearity quality?



Comparison with Previous Work

D: dimension of representation
K: max number of polysemy
L: number of neural layers

Non- Composi- Interpre- N Complexit
mEttiod Contextual tionglity Polysemy tabirﬁty (# of parameters) sim('gl, wgy )
Vectoral representation
Word2Vec (2013) vV Vv X X D O(N)
GloVe (2014) Vv Vi X X D O(N)
BERT-large (2019) X Vi Vv X D = 1024 high
Random-variable representations
Word2Gauss/S (2014) 4/ X X X D+1 O(N)
Word2Gauss/D (2014) 4/ X X % 2D O(N)
Word2GM/S (2017) Vv X Vv X (D+2)K O(KN)
Word2GM/D (2017) Vv X Vi X 2D+ 1)K O(KN)
Word2Cloud (2019) Vv X V v K = 64 O(N?)
CMD (2020) Vi nonlinear Vv X K = 200,400 O(N?)
Our semantic-field representations
FIRE (2022) Vv Vv vV Vv (2D+1)L+(D+1)K  O(KL)
FIRE/m (2022) Vv Vv Vi Vv (2D + 1)L + DK O(KL)




FIRE : Representation of Words in a Functional Space

A space

w; = [, fi(S)] ses

location function
Representing word context
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FIRE : Representation of Words in a Functional Space
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Similarity function sim(Wi, Wj)

Compositionality: Addition of f(s)
Polysemy: Shape of f(s) + number of locations K



Simple and Natural Extentions
 Polysemy by K locations per word

p=>y mFs(s™) m®) : weights (acquired by training)
k=1

« Sentence Representation

U= fw,wa] s fi(8)]s oo L, fn(s)]

= Z%“’“ f(s) = Z%fi(s) y; : weights (we use SIF)
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Implementation of FIRE via Skipgram

min Z a(—sim(wi,wp)) + U(Sim(wiawn))
Wi, Wp,Wn o . soft-plus function.

w, positive samples : Words that co-occur with w;

w, hegative samples : Words that do not co-occur with w;

w; = [u;, f;(s)] train f; (s;) and s; for every w;
location function

We used MLPlanar



Evaluation of FIRE

1. Word similarity benchmarks: FIRE competes well with SOTA
2. Sentence similarity benchmarks: less than BERT, compete with Word2Vec

3. Polysemy / monosemy classification

“bank” 1 =
polysemy \ /

“rock” ;
polysemy | :

“glacier”
monosemy

FIRE  Word2Vec Word2Gauss Word2GM

2d-PCA classification of representation
Polysemy : two clouds
Monosemy: one cloud

Only FIRE could achieve this distinction
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Classification: “polysemy” vs. “monosemy”
Only FIRE achieved better than a chance level
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