

VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

Zhan Tong^{1,2} Yibing Song² Jue Wang² Limin Wang^{1,3}

¹ State Key Laboratory for Novel Software Technology, Nanjing University ²Tencent Al Lab ³Shanghai Al Lab

腾讯人工智能实验室

Motivation

→ Transformer improves a series of computer vision tasks

- include fewer inductive biases
- e.g., classification, detection, segmentation and video understanding

→ Challenges for video understanding

- temporal redundancy and correlation
- higher computational consumption for video

→ Challenges for training video transformer

- need extra large-scale image/video data
- heavily depend on pre-trained models

How to efficiently train a vanilla ViT on the video dataset itself without using any pre-trained model or extra data?

VideoMAE

- → Our VideoMAE attempts to solve it in two aspects
 - Self-supervised pre-training with masked autoencoder
 - A new masking strategy: tube masking with an extremely high ratio

VideoMAE

- → Self-supervised pre-training with masked autoencoder
 - a simple but effective masking and reconstruction proxy task
 - an efficient pre-training process with only unmasked tokens into the encoder.

VideoMAE

- → A new masking strategy:
 - tube masking with an extremely high ratio
 - makeing video reconstruction a more challenging self-supervision task

→ and eventually, VideoMAE is a simple, data-efficient method for self-supervised video pre-training with high performance and no extra data required

Key Ablation Study

case	ratio	SSV2	K400			
tube	75	68.0	79.8			
tube	90	69.6	80.0			
random	90	68.3	79.5			
frame	87.5^{*}	61.5	76.5			
Masking strategy						

case	SSV2	K400
from scratch	32.6	68.8
ImageNet-21k sup.	61.8	78.9
IN-21k+K400 sup.	65.2	-
VideoMAE	69.6	80.0

Pre-training strategy

datasetmethodSSV2K400IN-1KImageMAE64.878.7K400VideoMAE68.580.0SSV2VideoMAE69.679.6

Pre-training dataset

Main Results and Analysis

→ VideoMAE is a data-efficient learner

dataset	training data	from scratch	MoCo v3		
K400	240k	68.8	74.2		
Sth-Sth V2	169k	32.6	54.2		
UCF101	9.5k	51.4	81.7		
HMDB51	3.5k	18.0	39.2		
	Performance on	video datasets of di	ifferent scales		
method	epoch f	ft. acc. lin. a	acc. hours		
MoCo v3	300	54.2 33	.7 61.7		
VideoMAE	E 800	69.6 38.	.9 19.5		

Efficiency and effectiveness on Something-Something V2

VideoMAE 80.0 69.6 91.3 62.6

speedup

3.2×

Main Results and Analysis

→ The effect of an **extremely high masking ratio**

Main Results and Analysis

 \rightarrow Transfer learning: quality vs. quantity

Jeading performance on Something-Something V2									
Method	Backbone	Extra data	Ex. labels	Frames	GFLOPs	Param	Top-1	Top-5	
TEINet $_{En}$ [39]	ResNet50 $\times 2$		\checkmark	8+16	99×10×3	50	66.5	N/A	
$TANet_{En}$ [40]	ResNet50 $\times 2$	ImageNet-1K	1	8+16	$99 \times 2 \times 3$	51	66.0	90.1	
TDN_{En} [74]	ResNet101 $\times 2$		1	8+16	$198 \times 1 \times 3$	88	69.6	92.2	
SlowFast [22]	ResNet101	Kinatias 400	1	8+32	$106 \times 1 \times 3$	53	63.1	87.6	
MViTv1 [21]	MViTv1-B	KIIICUCS-400	1	64	$455 \times 1 \times 3$	37	67.7	90.9	
TimeSformer [6]	ViT-B	ImagaNat 21K	1	8	196×1×3	121	59.5	N/A	
TimeSformer [6]	ViT-L	Innagemet-21K	1	64	5549×1×3	430	62.4	N/A	
ViViT FE [3]	ViT-L	IN-21K+K400	 ✓ 	32	995×4×3	N/A	65.9	89.9	
Motionformer [50]	ViT-B		1	16	$370 \times 1 \times 3$	109	66.5	90.1	
Motionformer [50]	ViT-L		1	32	$1185 \times 1 \times 3$	382	68.1	91.2	
Video Swin [38]	Swin-B		1	32	$321 \times 1 \times 3$	88	69.6	92.7	
VIMPAC [64]	ViT-L	HowTo100M+DALLE	X	10	$N/A \times 10 \times 3$	307	68.1	N/A	
BEVT [76]	Swin-B	IN-1K+K400+DALLE	×	32	$321 \times 1 \times 3$	88	70.6	N/A	
MaskFeat ³¹² [79]	MViT-L	Kinetics-600	\checkmark	40	$2828 \times 1 \times 3$	218	75.0	95.0	
VideoMAE	ViT-B	Kinetics-400	X	16	$180 \times 2 \times 3$	87	69.7	92.3	
VideoMAE	ViT-L	Kinetics-400	×	16	$597 \times 2 \times 3$	305	74.0	94.6	
VideoMAE	ViT-S		X	16	$57 \times 2 \times 3$	22	66.8	90.3	
VideoMAE	ViT-B	no external data	×	16	$180 \times 2 \times 3$	87	70.8	92.4	
VideoMAE	ViT-L		×	16	$597 \times 2 \times 3$	305	74.3	94.6	
VideoMAE	ViT-L		×	32	$1436 \times 1 \times 3$	305	75.4	95.2	

Leading performance on Kinetics-400									
Method	Backbone	Extra data	Ex. labels	Frames	GFLOPs	Param	Top-1	Top-5	
NL I3D [77]	ResNet101		✓	128	359×10×3	62	77.3	93.3	
TANet [40]	ResNet152	ImageNet-1K	1	16	$242 \times 4 \times 3$	59	79.3	94.1	
TDN_{En} [74]	ResNet101		1	8+16	$198 \times 10 \times 3$	88	79.4	94.4	
TimeSformer [6]	ViT-L		 ✓ 	96	8353×1×3	430	80.7	94.7	
ViViT FE [3]	ViT-L	ImageNet 21K	1	128	3980×1×3	N/A	81.7	93.8	
Motionformer [50]	ViT-L	Illiagenet-21K	1	32	$1185 \times 10 \times 3$	382	80.2	94.8	
Video Swin [38]	Swin-L		✓	32	$604 \times 4 \times 3$	197	83.1	95.9	
ViViT FE [3]	ViT-L	JFT-300M	 ✓ 	128	3980×1×3	N/A	83.5	94.3	
ViViT [3]	ViT-H	JFT-300M	1	32	3981×4×3	N/A	84.9	95.8	
VIMPAC [64]	ViT-L	HowTo100M+DALLE	×	10	N/A \times 10 \times 3	307	77.4	N/A	
BEVT [76]	Swin-B	IN-1K+DALLE	×	32	$282 \times 4 \times 3$	88	80.6	N/A	
MaskFeat ³⁵² [79]	MViT-L	Kinetics-600	×	40	3790×4×3	218	87.0	97.4	
ip-CSN [68]	ResNet152		×	32	$109 \times 10 \times 3$	33	77.8	92.8	
SlowFast [22]	R101+NL	no orternal data	×	16+64	$234 \times 10 \times 3$	60	79.8	93.9	
MViTv1 [21]	MViTv1-B		×	32	$170 \times 5 \times 1$	37	80.2	94.4	
MaskFeat [79]	MViT-L		×	16	377×10×1	218	84.3	96.3	
VideoMAE	ViT-S		X	16	$57 \times 5 \times 3$	22	79.0	93.8	
VideoMAE	ViT-B	no orternal data	×	16	$180 \times 5 \times 3$	87	81.5	95.1	
VideoMAE	ViT-L		×	16	$597 \times 5 \times 3$	305	85.2	96.8	
VideoMAE	ViT-H		×	16	$1192 \times 5 \times 3$	633	86.6	97.1	
VideoMAE ^{↑320}	ViT-L	no artemal data	X	32	3958×4×3	305	86.1	97.3	
VideoMAE [↑] 320	ViT-H	no exiernai dala	×	32	7397×4×3	633	87.4	97.6	

NEURAL INFORMATION PROCESSING SYSTEMS

→ Leading performance on AVA v2.2

Method	Backbone	Pre-train Dataset	Extra Labels	$T\times\tau$	GFLOPs	Param	mAP
supervised [22]	SlowFast-R101	Kinetics-400	\checkmark	8×8	138	53	23.8
CVRL [53]	SlowOnly-R50	Kinetics-400	×	32×2	42	32	16.3
$\rho BYOL_{\rho=3}$ [23]	SlowOnly-R50	Kinetics-400	×	8×8	42	32	23.4
$\rho MoCo_{\rho=3}$ [23]	SlowOnly-R50	Kinetics-400	×	8×8	42	32	20.3
MaskFeat ³¹² [79]	MViT-L	Kinetics-400	\checkmark	40×3	2828	218	37.5
MaskFeat ³¹² [79]	MViT-L	Kinetics-600	\checkmark	40×3	2828	218	38.8
VideoMAE	ViT-S	Kinetics-400	×	16×4	57	22	22.5
VideoMAE	ViT-S	Kinetics-400	\checkmark	16×4	57	22	28.4
VideoMAE	ViT-B	Kinetics-400	×	16×4	180	87	26.7
VideoMAE	ViT-B	Kinetics-400	\checkmark	16×4	180	87	31.8
VideoMAE	ViT-L	Kinetics-400	×	16×4	597	305	34.3
VideoMAE	ViT-L	Kinetics-400	\checkmark	16×4	597	305	37.0
VideoMAE	ViT-H	Kinetics-400	×	16×4	1192	633	36.5
VideoMAE	ViT-H	Kinetics-400	\checkmark	16×4	1192	633	39.5
VideoMAE	ViT-L	Kinetics-700	×	16×4	597	305	36.1
VideoMAE	ViT-L	Kinetics-700	✓	16×4	597	305	39.3

→ Leading performance on UCF101 and HMDB51

Method	Backbone	Extra data	Frames	Param	Modality	UCF101	HMDB51
OPN [35]	VGG	UCF101	N/A	N/A	V	59.6	23.8
VCOP [82]	R(2+1)D	UCF101	N/A	N/A	V	72.4	30.9
CoCLR [29]	S3D-G	UCF101	32	9M	V	81.4	52.1
Vi ² CLR [18]	S3D	UCF101	32	9M	V	82.8	52.9
VideoMAE	ViT-B	no external data	16	87M	V	91.3	62.6
SpeedNet [5]	S3D-G	Kinetics-400	64	9M	V	81.1	48.8
VTHCL [84]	SlowOnly-R50	Kinetics-400	8	32M	V	82.1	49.2
Pace [73]	R(2+1)D	Kinetics-400	16	15M	V	77.1	36.6
MemDPC [28]	R-2D3D	Kinetics-400	40	32M	V	86.1	54.5
CoCLR [29]	S3D-G	Kinetics-400	32	9M	V	87.9	54.6
RSPNet [12]	S3D-G	Kinetics-400	64	9M	V	93.7	64.7
VideoMoCo [45]	R(2+1)D	Kinetics-400	16	15M	V	78.7	49.2
Vi ² CLR [18]	S3D	Kinetics-400	32	9M	V	89.1	55.7
CVRL [53]	SlowOnly-R50	Kinetics-400	32	32M	V	92.9	67.9
CVRL [53]	SlowOnly-R50	Kinetics-600	32	32M	V	93.6	69.4
CVRL [53]	Slow-R152 (2 \times)	Kinetics-600	32	328M	V	94.4	70.6
CORP_f [32]	SlowOnly-R50	Kinetics-400	32	32M	V	93.5	68.0
$\rho \text{SimCLR}_{\rho=2}$ [23]	SlowOnly-R50	Kinetics-400	8	32M	V	88.9	N/A
$\rho \text{SwAV}_{\rho=2}$ [23]	SlowOnly-R50	Kinetics-400	8	32M	V	87.3	N/A
$\rho \text{MoCo}_{\rho=2}$ [23]	SlowOnly-R50	Kinetics-400	8	32M	V	91.0	N/A
$\rho BYOL_{\rho=2}$ [23]	SlowOnly-R50	Kinetics-400	8	32M	V	92.7	N/A
$\rho BYOL_{\rho=4}$ [23]	SlowOnly-R50	Kinetics-400	8	32M	V	94.2	72.1
VideoMAE(Ours)	ViT-B	Kinetics-400	16	87M	V	96.1	73.3

Visualizations

		in 13.					
		-					
				t			
			а • • • • • • • •				
				E			
original	mask 75%	mask 90%	mask 95%	original	mask 75%	mask 90%	mask 95%

→ VideoMAE, a data-efficient learner, enjoys

- masked video modeling for video pre-training
- a simple, efficient and strong baseline for SSVP
- Ieading performance with no extra data required

VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

Code is available at https://github.com/MCG-NJU/VideoMAE

