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Motivation
⇥ Transformer improves a series of computer vision tasks

‣ include fewer inductive biases
‣ e.g., classification, detection, segmentation and video understanding

⇥ Challenges for video understanding
‣ temporal redundancy and correlation
‣ higher computational consumption for video

⇥ Challenges for training video transformer
‣ need extra large-scale image/video data
‣ heavily depend on pre-trained models
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Motivation

How to efficiently train a vanilla ViT on the video dataset itself
without using any pre-trained model or extra data?
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VideoMAE
⇥ Our VideoMAE attempts to solve it in two aspects

‣ Self-supervised pre-training with masked autoencoder
‣ A new masking strategy: tube masking with an extremely high ratio
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VideoMAE
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⇥ Self-supervised pre-training with masked autoencoder
‣ a simple but effective masking and reconstruction proxy task
‣ an efficient pre-training process with only unmasked tokens into the encoder.
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VideoMAE
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⇥ A new masking strategy:
‣ tube masking with an extremely high ratio 
‣ makeing video reconstruction a more challenging self-supervision task
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Overall VideoMAE

⇥and eventually, VideoMAE is
‣ a simple, data-efficient method for self-supervised video pre-training

‣ with high performance and no extra data required
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Key Ablation Study
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Masking strategy Pre-training strategy Pre-training dataset

blocks SSV2 K400 GPU mem.
1 68.5 79.0 7.9G
2 69.2 79.2 10.2G
4 69.6 80.0 14.7G
8 69.3 79.7 23.7G

(a) Decoder depth. 4 blocks of
decoder achieve the best trade-
off. “GPU mem.” is GPU mem-
ory during pre-training, bench-
marked in one GPU with a batch
size of 16.

case ratio SSV2 K400
tube 75 68.0 79.8
tube 90 69.6 80.0
random 90 68.3 79.5
frame 87.5⇤ 61.5 76.5

(b) Mask sampling. We com-
pare different masking strate-
gies. Our proposed tube mask-
ing with an extremely high ratio
works the best. ⇤“87.5” means
masking 14/16 frames.

input target SSV2 K400
T⇥⌧ center 63.0 79.3
T⇥ ⌧

2 T⇥ ⌧
2 68.9 79.8

T⇥⌧ T⇥⌧ 69.6 80.0
T⇥⌧ 2T⇥ ⌧

2 69.2 80.1

(c) Reconstruction target. T ⇥
⌧ denotes “frames ⇥stride”. cen-

ter denotes the center frame of
the input clip. T is set to 16 as
default. ⌧ is set to 2 and 4 on
SSV2 and K400, respectively.

case SSV2 K400
from scratch 32.6 68.8
ImageNet-21k sup. 61.8 78.9
IN-21k+K400 sup. 65.2 -
VideoMAE 69.6 80.0

(d) Pre-training strategy. Our
VideoMAE works the best with-
out using any extra data. “sup.” is
supervised training.

dataset method SSV2 K400
IN-1K ImageMAE 64.8 78.7
K400 VideoMAE 68.5 80.0
SSV2 VideoMAE 69.6 79.6

(e) Pre-training dataset. Our
VideoMAE works the best when
directly pre-training the models
on the source datasets.

case SSV2 K400
L1 loss 69.1 79.7
MSE loss 69.6 80.0
Smooth L1 loss 68.9 79.6

(f) Loss function. MSE loss
works the best for the mask-
ing and reconstruction task in
VideoMAE.

Table 1: Ablation experiments on Something-Something V2 and Kinetics-400. Our backbone is
16-frame vanilla ViT-B and all models are pre-trained with mask ratio ⇢=90% for 800 epochs, and fine-
tuned for evaluation. We perform TSN [75] uniform sampling on SSV2 and dense sampling [77, 22]
on K400. All models share the same inference protocol, i.e., 2 clips ⇥ 3 crops on SSV2 and 5 clips
⇥ 3 crops on K400. The default choice for our model is colored in gray .

Masking strategy. We compare different masking strategies in Table 1b. When increasing the
masking ratio from 75% to 90% for tube masking, the performance on SSV2 boosts from 68.0% to
69.6%. Then, with an extremely high ratio, we find tube masking also achieves better performance
than plain random masking and frame masking. We attribute these interesting observations to the
redundancy and temporal correlation in videos. The conclusion on K400 is in accord with one on
SSV2. One may note that the performance gap on K400 is lower than one on SSV2. We argue that
the Kinetics videos are mostly stationary and scene-related. The effect of temporal modeling is not
obvious. Overall, we argue that our default designs enforce the networks to capture more useful
spatiotemporal structures and therefore make VideoMAE a more challenging task, which a good
self-supervised learner hunger for.

Reconstruction target. First, if we only employ the center frame as the target, the results would
decrease greatly as shown in Table 1c. The sampling stride is also sensitive. The result of small
sampling stride ⌧

2 is lower than default sampling stride ⌧ (68.9% vs. 69.6% on SSV2). We also try
to reconstruct 2T frames from the downsampled T frames, but it obtains slightly worse results on
SSV2. For simplicity, we use the input downsampled clip as our default reconstruction target.

Pre-training strategy. We compare different pre-training strategies in Table 1d. Similar to previous
trials [3, 6], training video transformers from scratch yields unsatisfied results on video datasets.
When pre-trained on the large-scale ImageNet-21K dataset, the video transformer obtains better
accuracy from 32.6% to 61.8% on SSV2 and 68.8% to 78.9% on K400. Using the models pre-trained
on both ImageNet-21K and Kinetics further increases accuracy to 65.2% on SSV2. Our VideoMAE
can effectively train a video transformer on the video dataset itself without using any extra data and
achieve the best performance (69.6% on SSV2 and 80.0% on K400).

Pre-training dataset. First, we pre-train the ViT-B on ImageNet-1K for 1600 epochs, following
the recipes in [30]. Then we inflate the 2D patch embedding layer to our cube embedding layer
following [10] and fine-tune the model on the target video datasets. The results surpass the model
trained from scratch as shown in Table 1e. We also compare the ImageMAE pre-trained model with
VideoMAE models pre-trained on video datasets. We see that our VideoMAE models can achieve
better performance than ImageMAE. However, when we try to transfer the pre-trained VideoMAE
models to the other video datasets (e.g. from Kinetics to Something-Something), the results are
slightly worse than their counterpart, which is directly pre-trained on its own target video datasets.
We argue that domain shift between pre-training and target datasets could be an important issue.
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Main Results and Analysis
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⇥ VideoMAE is a data-efficient learner

Performance on video datasets of different scales

Efficiency and effectiveness on Something-Something V2

dataset training data from scratch MoCo v3 VideoMAE
K400 240k 68.8 74.2 80.0
Sth-Sth V2 169k 32.6 54.2 69.6
UCF101 9.5k 51.4 81.7 91.3
HMDB51 3.5k 18.0 39.2 62.6

Table 2: Comparisons with the results of previous self-supvised pre-training methods on different
datasets. We take 16-frame ViT-B as the default backbone. Notably, here MoCo v3 and VideoMAE
all only use the unlabelled data in the training set of each dataset for pre-training and are all fine-tuned
for evaluation.

method epoch ft. acc. lin. acc. hours speedup
MoCo v3 300 54.2 33.7 61.7 -
VideoMAE 800 69.6 38.9 19.5 3.2⇥

Table 3: Comparisons with the efficiency and effectiveness on Something-Something V2. We report
the fine-tuning (ft) and linear probing (lin) accuracy (%). The wall-clock time of pre-training is
benchmarked in 64 Tesla V100 GPUs with PyTorch.

method K400 ! SSV2 K400 ! UCF K400 ! HMDB
MoCo v3 62.4 93.2 67.9
VideoMAE 68.5 96.1 73.3

Table 4: Comparisons with the feature transferability on smaller datasets. We take 16-frame ViT-B
as the default backbone. Notably, here MoCo v3 and VideoMAE are all pre-trained on Kinetics-400
with unlabelled data in the training set. Then the pre-trained model is fine-tuned on target datasets
for evaluation.

Loss function. Table 1f contains an ablation study of loss function. We find that the MSE loss could
achieve a higher result compared with the L1 loss and smooth L1 loss. Therefore, we employ the
MSE loss by default.

4.3 Main Results and Analysis

VideoMAE: data-efficient learner. The self-supervised video pre-training (SSVP) has been exten-
sively studied in previous works, but they mainly use the CNN-based backbones. Few works have
investigated transformer-based backbone in SSVP. Therefore, to demonstrate the effectiveness of
VideoMAE for transformer-based SSVP, we compare two methods implemented by ourselves: (1)
training from scratch and (2) pre-training with contrastive learning (MoCo v3 [14]). For training
from scratch, we carefully tune these hyper-parameters to successfully pre-train ViT-Base from the
training set of the dataset. For pre-training with MoCo v3, we strictly follow the training practice in
its image counterpart and carefully avoid the collapse issue.

The recognition accuracy is reported in Table 2. We see that our VideoMAE significantly outperforms
other two training settings. For instance, on the largest dataset of Kinetics-400, our VideoMAE
outperforms training from scratch by around 10% and MoCo v3 pre-training by around 5%. This
superior performance demonstrates that masked autoencoder provides an effective pre-training
mechanism for video transformers. We also see that the performance gap between our VideoMAE
and the other two methods becomes larger as the training set becomes smaller. Notably, even with only
3.5k training clips on HMDB51, our VideoMAE pre-training can still obtain a satisfying accuracy
(around 61%). This new result demonstrates that VideoMAE is a more data-efficient learner for SSVP.
This property is particularly important for scenarios with limited data available and different with
contrastive learning methods.

We compare the efficiency of VideoMAE pre-training and MoCo v3 pre-training in Table 3. The task
of masked autoencoding with a high ratio is more challenging and thereby requires more training
epochs (800 vs. 300). Thanks to the asymmetric encoder-decoder in our VideoMAE and extremely
high masking ratio, our pre-training time is much shorter than MoCo v3 (19.5 vs. 61.7 hours).

High masking ratio. In VideoMAE, one core design is the extremely high masking ratio. We
perform an investigation of this design on the Kinetics-400 and Something-Something V2 datasets.
The results are shown in Figure 3. We see that the best masking ratio is extremely high, and even
95% can achieve good performance for both datasets. This result is difference from BERT [17] in
NLP and MAE [30] in images. We analyze the temporal redundancy and correlation in videos makes
it possible for our VideoMAE to learn plausible outputs with such a high masking ratio.
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⇥ The effect of an extremely high masking ratio
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⇥ Transfer learning: quality vs. quantity

feature transferability on smaller datasets

data quality is more important than data quantity
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(around 61%). This new result demonstrates that VideoMAE is a more data-efficient learner for SSVP.
This property is particularly important for scenarios with limited data available and different with
contrastive learning methods.

We compare the efficiency of VideoMAE pre-training and MoCo v3 pre-training in Table 3. The task
of masked autoencoding with a high ratio is more challenging and thereby requires more training
epochs (800 vs. 300). Thanks to the asymmetric encoder-decoder in our VideoMAE and extremely
high masking ratio, our pre-training time is much shorter than MoCo v3 (19.5 vs. 61.7 hours).

High masking ratio. In VideoMAE, one core design is the extremely high masking ratio. We
perform an investigation of this design on the Kinetics-400 and Something-Something V2 datasets.
The results are shown in Figure 3. We see that the best masking ratio is extremely high, and even
95% can achieve good performance for both datasets. This result is difference from BERT [17] in
NLP and MAE [30] in images. We analyze the temporal redundancy and correlation in videos makes
it possible for our VideoMAE to learn plausible outputs with such a high masking ratio.
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Experiments
⇥ Leading performance on Something-Something V2
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Method Backbone Pre-train Dataset Extra Labels T ⇥ ⌧ GFLOPs Param mAP
supervised [22] SlowFast-R101 Kinetics-400 3 8⇥8 138 53 23.8
CVRL [53] SlowOnly-R50 Kinetics-400 7 32⇥2 42 32 16.3
⇢BYOL⇢=3 [23] SlowOnly-R50 Kinetics-400 7 8⇥8 42 32 23.4
⇢MoCo⇢=3 [23] SlowOnly-R50 Kinetics-400 7 8⇥8 42 32 20.3
MaskFeat↑312 [79] MViT-L Kinetics-400 3 40⇥3 2828 218 37.5
MaskFeat↑312 [79] MViT-L Kinetics-600 3 40⇥3 2828 218 38.8
VideoMAE ViT-S Kinetics-400 7 16⇥4 57 22 22.5
VideoMAE ViT-S Kinetics-400 3 16⇥4 57 22 28.4
VideoMAE ViT-B Kinetics-400 7 16⇥4 180 87 26.7
VideoMAE ViT-B Kinetics-400 3 16⇥4 180 87 31.8
VideoMAE ViT-L Kinetics-400 7 16⇥4 597 305 34.3
VideoMAE ViT-L Kinetics-400 3 16⇥4 597 305 37.0
VideoMAE ViT-H Kinetics-400 7 16⇥4 1192 633 36.5
VideoMAE ViT-H Kinetics-400 3 16⇥4 1192 633 39.5
VideoMAE ViT-L Kinetics-700 7 16⇥4 597 305 36.1
VideoMAE ViT-L Kinetics-700 3 16⇥4 597 305 39.3

Table 5: Comparison with the state-of-the-art methods on AVA v2.2. All models are pre-trained
and fine-tuned at image size 2242. We report the mean Average Precision (mAP) on validation set.
“Ex. labels 7” means only unlabelled data is used during the pre-training phase and the pre-trained
models are directly transferred to AVA. “Ex. labels 3” means pre-trained models are additionally
fine-tuned on the pre-training dataset with labels before transferred to AVA. T ⇥ ⌧ refers to frame
number and corresponding sample rate.

Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5
TEINetEn [39] ResNet50⇥2

ImageNet-1K
3 8+16 99⇥10⇥3 50 66.5 N/A

TANetEn [40] ResNet50⇥2 3 8+16 99⇥2⇥3 51 66.0 90.1
TDNEn [74] ResNet101⇥2 3 8+16 198⇥1⇥3 88 69.6 92.2
SlowFast [22] ResNet101 Kinetics-400 3 8+32 106⇥1⇥3 53 63.1 87.6
MViTv1 [21] MViTv1-B 3 64 455⇥1⇥3 37 67.7 90.9
TimeSformer [6] ViT-B ImageNet-21K 3 8 196⇥1⇥3 121 59.5 N/A
TimeSformer [6] ViT-L 3 64 5549⇥1⇥3 430 62.4 N/A
ViViT FE [3] ViT-L

IN-21K+K400

3 32 995⇥4⇥3 N/A 65.9 89.9
Motionformer [50] ViT-B 3 16 370⇥1⇥3 109 66.5 90.1
Motionformer [50] ViT-L 3 32 1185⇥1⇥3 382 68.1 91.2
Video Swin [38] Swin-B 3 32 321⇥1⇥3 88 69.6 92.7
VIMPAC [64] ViT-L HowTo100M+DALLE 7 10 N/A⇥10⇥3 307 68.1 N/A
BEVT [76] Swin-B IN-1K+K400+DALLE 7 32 321⇥1⇥3 88 70.6 N/A
MaskFeat↑312 [79] MViT-L Kinetics-600 3 40 2828⇥1⇥3 218 75.0 95.0
VideoMAE ViT-B Kinetics-400 7 16 180⇥2⇥3 87 69.7 92.3
VideoMAE ViT-L Kinetics-400 7 16 597⇥2⇥3 305 74.0 94.6
VideoMAE ViT-S

no external data

7 16 57⇥2⇥3 22 66.8 90.3
VideoMAE ViT-B 7 16 180⇥2⇥3 87 70.8 92.4
VideoMAE ViT-L 7 16 597⇥2⇥3 305 74.3 94.6
VideoMAE ViT-L 7 32 1436⇥1⇥3 305 75.4 95.2
Table 6: Comparison with the state-of-the-art methods on Something-Something V2. Our
VideoMAE reconstructs normalized cube pixels and is pre-trained with a masking ratio of 90% for
2400 epochs. “Ex. labels 7” means only unlabelled data is used during the pre-training phase. “N/A”
indicates the numbers are not available for us.

4.4 Comparison with the state of the art

We compare with the previous state-of-the-art performance on the Kinetics-400 and Something-
Something V2 datasets. The results are reported in Table 6 and Table 7. Our VideoMAE can easily
scale up with more powerful backbones (e.g. ViT-Large and ViT-Huge) and more frames (e.g. 32).
Our VideoMAE achieves the top-1 accuracy of 75.4% on Something-Something V2 and 87.4% on
Kinetics-400 without using any extra data. We see that the existing state-of-the-art methods all
depend on the external data for pre-training on the Something-Something V2 dataset. On the contrary,
our VideoMAE without any external data significantly outperforms previous methods with the same
input resolution by around 5%. Our ViT-H VideoMAE also achieves very competitive performance
on the Kinetics-400 dataset without using any extra data, which is even better than ViViT-H with on
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Experiments
⇥ Leading performance on Kinetics-400
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Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5
NL I3D [77] ResNet101

ImageNet-1K
3 128 359⇥10⇥3 62 77.3 93.3

TANet [40] ResNet152 3 16 242⇥4⇥3 59 79.3 94.1
TDNEn [74] ResNet101 3 8+16 198⇥10⇥3 88 79.4 94.4
TimeSformer [6] ViT-L

ImageNet-21K

3 96 8353⇥1⇥3 430 80.7 94.7
ViViT FE [3] ViT-L 3 128 3980⇥1⇥3 N/A 81.7 93.8
Motionformer [50] ViT-L 3 32 1185⇥10⇥3 382 80.2 94.8
Video Swin [38] Swin-L 3 32 604⇥4⇥3 197 83.1 95.9
ViViT FE [3] ViT-L JFT-300M 3 128 3980⇥1⇥3 N/A 83.5 94.3
ViViT [3] ViT-H JFT-300M 3 32 3981⇥4⇥3 N/A 84.9 95.8
VIMPAC [64] ViT-L HowTo100M+DALLE 7 10 N/A⇥10⇥3 307 77.4 N/A
BEVT [76] Swin-B IN-1K+DALLE 7 32 282⇥4⇥3 88 80.6 N/A
MaskFeat↑352 [79] MViT-L Kinetics-600 7 40 3790⇥4⇥3 218 87.0 97.4
ip-CSN [68] ResNet152

no external data

7 32 109⇥10⇥3 33 77.8 92.8
SlowFast [22] R101+NL 7 16+64 234⇥10⇥3 60 79.8 93.9
MViTv1 [21] MViTv1-B 7 32 170⇥5⇥1 37 80.2 94.4
MaskFeat [79] MViT-L 7 16 377⇥10⇥1 218 84.3 96.3
VideoMAE ViT-S

no external data

7 16 57⇥5⇥3 22 79.0 93.8
VideoMAE ViT-B 7 16 180⇥5⇥3 87 81.5 95.1
VideoMAE ViT-L 7 16 597⇥5⇥3 305 85.2 96.8
VideoMAE ViT-H 7 16 1192⇥5⇥3 633 86.6 97.1
VideoMAE↑320 ViT-L

no external data
7 32 3958⇥4⇥3 305 86.1 97.3

VideoMAE↑320 ViT-H 7 32 7397⇥4⇥3 633 87.4 97.6

Table 7: Comparison with the state-of-the-art methods on Kinetics-400. Our VideoMAE recon-
structs normalized cube pixels. Here models are self-supervised pre-trained with a masking ratio
of 90% for 1600 epochs on Kinetics-400. VideoMAE↑320 is initialized from its 2242 resolution
counterpart and then fine-tuned for evaluation. “Ex. labels 7” means only unlabelled data is used
during the pre-training phase. “N/A” indicates the numbers are not available for us.

JFT-300M pre-training (86.6% v.s. 84.9%). When fine-tuned with larger spatial resolutions and input
video frames, the performance of our ViT-H VideoMAE can further boost from 86.6% to 87.4%.

5 Conclusion

In this paper, we have presented a simple and data-efficient self-supervised learning method (Video-
MAE) for video transformer pre-training. Our VideoMAE introduces two critical designs of extremely
high masking ratio and tube masking strategy to make the video reconstruction task more challenging.
This harder task would encourage VideoMAE to learn more representative features and relieve the
information leakage issue. Empirical results demonstrate this simple algorithm works well for video
datasets of different scales. In particular, we are able to learn effective VideoMAE only with thousands
of video clips, which has significant practical value for scenarios with limited data available.

Future work VideoMAE could be further improved by using larger webly datasets, larger models
(e.g., ViT-G) and larger spatial resolutions of input video (e.g., 3842). VideoMAE only leverages the
RGB video stream without using additional audio or text stream. We expect that audio and text from
the video data can provide more information for self-supervised pre-training.

Broader impact Potential negative societal impacts of VideoMAE are mainly concerned with energy
consumption. The pre-training phase may lead to a large amount of carbon emission. Though the
pre-training is energy-consuming, we only need to pre-train the model once. Different downstream
tasks can then share the same pre-trained model via additional fine-tuning. Our VideoMAE unleashes
the great potential of vanilla vision transformer for video analysis, which could increase the risk of
video understanding model or its outputs being used incorrectly, such as for unauthorized surveillance.

Acknowledgements and disclosure of funding Thanks to Ziteng Gao, Lei Chen and Chongjian
Ge for their help. This work is supported by National Natural Science Foundation of China (No.
62076119, No. 61921006), the Fundamental Research Funds for the Central Universities (No.
020214380091), Tencent AI Lab Rhino-Bird Focused Research Program (No. JR202125), and
Collaborative Innovation Center of Novel Software Technology and Industrialization.
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Method Backbone Pre-train Dataset Extra Labels T ⇥ ⌧ GFLOPs Param mAP
supervised [22] SlowFast-R101 Kinetics-400 3 8⇥8 138 53 23.8
CVRL [53] SlowOnly-R50 Kinetics-400 7 32⇥2 42 32 16.3
⇢BYOL⇢=3 [23] SlowOnly-R50 Kinetics-400 7 8⇥8 42 32 23.4
⇢MoCo⇢=3 [23] SlowOnly-R50 Kinetics-400 7 8⇥8 42 32 20.3
MaskFeat↑312 [79] MViT-L Kinetics-400 3 40⇥3 2828 218 37.5
MaskFeat↑312 [79] MViT-L Kinetics-600 3 40⇥3 2828 218 38.8
VideoMAE ViT-S Kinetics-400 7 16⇥4 57 22 22.5
VideoMAE ViT-S Kinetics-400 3 16⇥4 57 22 28.4
VideoMAE ViT-B Kinetics-400 7 16⇥4 180 87 26.7
VideoMAE ViT-B Kinetics-400 3 16⇥4 180 87 31.8
VideoMAE ViT-L Kinetics-400 7 16⇥4 597 305 34.3
VideoMAE ViT-L Kinetics-400 3 16⇥4 597 305 37.0
VideoMAE ViT-H Kinetics-400 7 16⇥4 1192 633 36.5
VideoMAE ViT-H Kinetics-400 3 16⇥4 1192 633 39.5
VideoMAE ViT-L Kinetics-700 7 16⇥4 597 305 36.1
VideoMAE ViT-L Kinetics-700 3 16⇥4 597 305 39.3

Table 5: Comparison with the state-of-the-art methods on AVA v2.2. All models are pre-trained
and fine-tuned at image size 2242. We report the mean Average Precision (mAP) on validation set.
“Ex. labels 7” means only unlabelled data is used during the pre-training phase and the pre-trained
models are directly transferred to AVA. “Ex. labels 3” means pre-trained models are additionally
fine-tuned on the pre-training dataset with labels before transferred to AVA. T ⇥ ⌧ refers to frame
number and corresponding sample rate.

Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5
TEINetEn [39] ResNet50⇥2

ImageNet-1K
3 8+16 99⇥10⇥3 50 66.5 N/A

TANetEn [40] ResNet50⇥2 3 8+16 99⇥2⇥3 51 66.0 90.1
TDNEn [74] ResNet101⇥2 3 8+16 198⇥1⇥3 88 69.6 92.2
SlowFast [22] ResNet101 Kinetics-400 3 8+32 106⇥1⇥3 53 63.1 87.6
MViTv1 [21] MViTv1-B 3 64 455⇥1⇥3 37 67.7 90.9
TimeSformer [6] ViT-B ImageNet-21K 3 8 196⇥1⇥3 121 59.5 N/A
TimeSformer [6] ViT-L 3 64 5549⇥1⇥3 430 62.4 N/A
ViViT FE [3] ViT-L

IN-21K+K400

3 32 995⇥4⇥3 N/A 65.9 89.9
Motionformer [50] ViT-B 3 16 370⇥1⇥3 109 66.5 90.1
Motionformer [50] ViT-L 3 32 1185⇥1⇥3 382 68.1 91.2
Video Swin [38] Swin-B 3 32 321⇥1⇥3 88 69.6 92.7
VIMPAC [64] ViT-L HowTo100M+DALLE 7 10 N/A⇥10⇥3 307 68.1 N/A
BEVT [76] Swin-B IN-1K+K400+DALLE 7 32 321⇥1⇥3 88 70.6 N/A
MaskFeat↑312 [79] MViT-L Kinetics-600 3 40 2828⇥1⇥3 218 75.0 95.0
VideoMAE ViT-B Kinetics-400 7 16 180⇥2⇥3 87 69.7 92.3
VideoMAE ViT-L Kinetics-400 7 16 597⇥2⇥3 305 74.0 94.6
VideoMAE ViT-S

no external data

7 16 57⇥2⇥3 22 66.8 90.3
VideoMAE ViT-B 7 16 180⇥2⇥3 87 70.8 92.4
VideoMAE ViT-L 7 16 597⇥2⇥3 305 74.3 94.6
VideoMAE ViT-L 7 32 1436⇥1⇥3 305 75.4 95.2
Table 6: Comparison with the state-of-the-art methods on Something-Something V2. Our
VideoMAE reconstructs normalized cube pixels and is pre-trained with a masking ratio of 90% for
2400 epochs. “Ex. labels 7” means only unlabelled data is used during the pre-training phase. “N/A”
indicates the numbers are not available for us.

4.4 Comparison with the state of the art

We compare with the previous state-of-the-art performance on the Kinetics-400 and Something-
Something V2 datasets. The results are reported in Table 6 and Table 7. Our VideoMAE can easily
scale up with more powerful backbones (e.g. ViT-Large and ViT-Huge) and more frames (e.g. 32).
Our VideoMAE achieves the top-1 accuracy of 75.4% on Something-Something V2 and 87.4% on
Kinetics-400 without using any extra data. We see that the existing state-of-the-art methods all
depend on the external data for pre-training on the Something-Something V2 dataset. On the contrary,
our VideoMAE without any external data significantly outperforms previous methods with the same
input resolution by around 5%. Our ViT-H VideoMAE also achieves very competitive performance
on the Kinetics-400 dataset without using any extra data, which is even better than ViViT-H with on
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Experiments
⇥ Leading performance on UCF101 and HMDB51
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Method Backbone Extra data Frames Param Modality UCF101 HMDB51
VGG UCF101 N/A N/A V 59.6 23.8

R(2+1)D UCF101 N/A N/A V 72.4 30.9
S3D-G UCF101 32 9M V 81.4 52.1

S3D UCF101 32 9M V 82.8 52.9
VideoMAE(Ours) ViT-B no external data 16 87M V 90.8 61.1

S3D-G Kinetics-400 64 9M V 81.1 48.8
SlowOnly-R50 Kinetics-400 8 32M V 82.1 49.2

R(2+1)D Kinetics-400 16 15M V 77.1 36.6
R-2D3D Kinetics-400 40 32M V 86.1 54.5
S3D-G Kinetics-400 32 9M V 87.9 54.6
S3D-G Kinetics-400 64 9M V 93.7 64.7

R(2+1)D Kinetics-400 16 15M V 78.7 49.2
S3D Kinetics-400 32 9M V 89.1 55.7

SlowOnly-R50 Kinetics-400 32 32M V 92.9 67.9
SlowOnly-R50 Kinetics-600 32 32M V 93.6 69.4

Slow-R152 (2⇥) Kinetics-600 32 328M V 94.4 70.6
SlowOnly-R50 Kinetics-400 32 32M V 93.5 68.0
SlowOnly-R50 Kinetics-400 8 32M V 88.9 N/A
SlowOnly-R50 Kinetics-400 8 32M V 87.3 N/A
SlowOnly-R50 Kinetics-400 8 32M V 91.0 N/A
SlowOnly-R50 Kinetics-400 8 32M V 92.7 N/A
SlowOnly-R50 Kinetics-400 8 32M V 94.2 72.1

S3D HowTo100M 32 9M V+T 91.3 61.0
S3D-G AS+HTM 32 9M V+A+T 92.5 69.6

R(2+1)D Youtube8M-2 N/A N/A V+A 93.8 67.4
R(2+1)D Kinetics-400 32 15M V+A 84.2 47.1
R(2+1)D IG65M 32 15M V+A 94.2 67.1
R(2+1)D Kinetics-400 32 15M V+A 89.3 60.0
R(2+1)D IG65M 32 15M V+A 95.2 72.8

VideoMAE(Ours) ViT-B Kinetics-400 16 87M V 96.1 73.3

Table 15: Comparison with the state-of-the-art methods on UCF101 and HMDB51. We report
fine-tuning accuracy for evaluation. ‘V’ refers to visual only, ‘A’ is audio, ‘T’ is text narration. “N/A”
indicates the numbers are not available for us.
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MIL-NCE 
MMV
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XDC
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GDT
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VTHCL 
Pace 
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CVRL
CVRL
CVRL 
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OPN 
VCOP 
CoCLR
Vi2CLR

Method Backbone Extra data Frames Param Modality UCF101 HMDB51
OPN [35] VGG UCF101 N/A N/A V 59.6 23.8
VCOP [82] R(2+1)D UCF101 N/A N/A V 72.4 30.9
CoCLR [29] S3D-G UCF101 32 9M V 81.4 52.1
Vi2CLR [18] S3D UCF101 32 9M V 82.8 52.9
VideoMAE ViT-B no external data 16 87M V 91.3 62.6
SpeedNet [5] S3D-G Kinetics-400 64 9M V 81.1 48.8
VTHCL [84] SlowOnly-R50 Kinetics-400 8 32M V 82.1 49.2
Pace [73] R(2+1)D Kinetics-400 16 15M V 77.1 36.6
MemDPC [28] R-2D3D Kinetics-400 40 32M V 86.1 54.5
CoCLR [29] S3D-G Kinetics-400 32 9M V 87.9 54.6
RSPNet [12] S3D-G Kinetics-400 64 9M V 93.7 64.7
VideoMoCo [45] R(2+1)D Kinetics-400 16 15M V 78.7 49.2
Vi2CLR [18] S3D Kinetics-400 32 9M V 89.1 55.7
CVRL [53] SlowOnly-R50 Kinetics-400 32 32M V 92.9 67.9
CVRL [53] SlowOnly-R50 Kinetics-600 32 32M V 93.6 69.4
CVRL [53] Slow-R152 (2⇥) Kinetics-600 32 328M V 94.4 70.6
CORPf [32] SlowOnly-R50 Kinetics-400 32 32M V 93.5 68.0
⇢SimCLR⇢=2 [23] SlowOnly-R50 Kinetics-400 8 32M V 88.9 N/A
⇢SwAV⇢=2 [23] SlowOnly-R50 Kinetics-400 8 32M V 87.3 N/A
⇢MoCo⇢=2 [23] SlowOnly-R50 Kinetics-400 8 32M V 91.0 N/A
⇢BYOL⇢=2 [23] SlowOnly-R50 Kinetics-400 8 32M V 92.7 N/A
⇢BYOL⇢=4 [23] SlowOnly-R50 Kinetics-400 8 32M V 94.2 72.1
MIL-NCE [43] S3D HowTo100M 32 9M V+T 91.3 61.0
MMV [1] S3D-G AS+HTM 32 9M V+A+T 92.5 69.6
CPD [36] ResNet50 IG300k 16 N/A V+T 92.8 63.8
ELO [51] R(2+1)D Youtube8M-2 N/A N/A V+A 93.8 67.4
XDC [2] R(2+1)D Kinetics-400 32 15M V+A 84.2 47.1
XDC [2] R(2+1)D IG65M 32 15M V+A 94.2 67.1
GDT [49] R(2+1)D Kinetics-400 32 15M V+A 89.3 60.0
GDT [49] R(2+1)D IG65M 32 15M V+A 95.2 72.8
VideoMAE ViT-B Kinetics-400 16 87M V 96.1 73.3

Table 13: Comparison with the state-of-the-art methods on UCF101 and HMDB51. Our
VideoMAE reconstructs normalized cube pixels and is pre-trained with a masking ratio of 75% for
3200 epochs on UCF101 and 4800 epochs on HMDB51, respectively. We report fine-tuning accuracy
for evaluation. ‘V’ refers to visual only, ‘A’ is audio, ‘T’ is text narration. “N/A” indicates the
numbers are not available for us.

is able to learn more representative features that capture the holistic spatiotemporal structure in
videos.

F License of Data

All the datasets we used are commonly used datasets for academic purpose. The license of the
Something-Something V25 and UCF1016 datasets is custom. The license of the Kinetics-4007,
HMDB518 and AVA9 datasets is CC BY-NC 4.010.

5URL: https://developer.qualcomm.com/software/ai-datasets/something-something
6URL: https://www.crcv.ucf.edu/data/UCF101.php
7URL: https://www.deepmind.com/open-source/kinetics
8URL: https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
9URL: https://research.google.com/ava/index.html

10URL: https://creativecommons.org/licenses/by/4.0
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Recap

⇥VideoMAE, a data-efficient learner, enjoys
‣ masked video modeling for video pre-training
‣ a simple, efficient and strong baseline for SSVP
‣ leading performance with no extra data required
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VideoMAE: Masked Autoencoders are Data-Efficient 
Learners for Self-Supervised Video Pre-Training

Code is available at
https://github.com/MCG-NJU/VideoMAE


