

Multi-view Subspace Clustering on Topological Manifold

Shudong Huang^{1#}, Hongjie Wu^{1#}, Yazhou Ren², Ivor W. Tsang³, Zenglin Xu⁴, Wentao Feng^{1*} and Jiancheng Lv^{1*}

¹College of Computer Science, Sichuan University, China
²School of Computer Science and Engineering, UESTC, China
³Centre for Frontier AI Research, A*STAR, Singapore
⁴School of Computer Science and Technology, Harbin Institute of Technology Shenzhen, China

{huangsd, Wtfeng2021, lvjiancheng}@scu.edu.cn, wuhongjie0818@gmail.com, yazhou.ren@uestc.edu.cn, ivor.tsang@gmail.com, xuzenglin@hit.edu.cn

Outline

- Multi-view Subspace Clustering Revisit
- Multi-view Subspace Clustering on Topological Manifold
- > Optimization Algorithm
- Experimental Results
- Conclusions

Multi-view Subspace Clustering Revisit

Subspace Clustering: given a dataset $X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{k \times n}$, with *n* data points and *k* features, the self-expression based subspace clustering problem can be defined as

$$\min_{\mathbf{Z}} \|\mathbf{X} - \mathbf{X}\mathbf{Z}\|_{F}^{2} + \alpha \|\mathbf{Z}\|_{F}^{2}$$

s.t. $\mathbf{Z} \ge 0, diag(\mathbf{Z}) = 0,$

where $Z \in \mathbb{R}^{n \times n}$ is the similarity graph of data points, and α is a trade-off parameter. **Multi-view Subspace Clustering**: when data is presented in multiple view $\{X^{(1)}, X^{(2)}, \dots, X^{(m)}\}$, we can easily extend the above formula to a multi-view version:

$$\min_{\mathbf{Z}^{(v)}} \sum_{v=1}^{m} \left\| \mathbf{X}^{(v)} - \mathbf{X}^{(v)} \mathbf{Z}^{(v)} \right\|_{F}^{2} + \alpha \left\| \mathbf{Z}^{(v)} \right\|_{F}^{2}$$

s.t. $\mathbf{Z}^{(v)} \ge 0, diag\left(\mathbf{Z}^{(v)}\right) = 0,$

Multi-view Subspace Clustering Revisit

Drawbacks of existing methods:

• Real-world datasets are usually sampled from a nonlinear low-dimensional manifold. But existing clustering methods **do not** consider the manifold topological structure.

• Existing clustering methods usually adopt predefined similarity graphs as input. The graph learning and subsequent multi-view clustering are separated. Thus the constructed graph may **not be suitable** for the subsequent clustering.

Multi-view Subspace Clustering on Topological Manifold

Our contributions:

- We argue to explore the implied data manifold by learning the topological relationship, and propose to integrate multiple affinity graphs into a consensus one with the topological relevance considered.
- Our method is a unified framework which combining affinity graph constructing, topological relevance learning, and label partitioning. And each subtask can be enhanced in a mutual reinforcement manner.
- An effective alternating iterative algorithm is carefully designed to solve the optimization problem of the proposed model. Experimental results on several benchmark datasets demonstrate the effectiveness of our method.

Multi-view Subspace Clustering on Topological Manifold

Topological Manifold Learning:

We propose to learn a more suitable manifold topological structure, such that the intrinsic similarities can be explicitly uncovered.

Given a predefined similarity graph $Z \in \mathbb{R}^{n \times n}$, we investigated the topological structure of data by solving

$$\min_{\mathbf{S}} \frac{1}{2} \sum_{i,j,k=1}^{n} \mathbf{Z}_{jk} \left(\mathbf{S}_{ij} - \mathbf{S}_{ik} \right)^{2} + \beta \left\| \mathbf{S} - \mathbf{I} \right\|_{F}^{2},$$

where β is a balance parameter, *i*, *j*, and *k* are data point indexes.

S represents the target topological relationship matrix, and S_{ij} denotes the data point *j*'s topological relevance to *i*.

 \mathbf{S}

Multi-view Subspace Clustering on Topological Manifold

With the multi-view subspace representation, connectivity constraint, and normalize term, the final objective function is:

$$\begin{split} \min_{\mathbf{Z}^{(v)},\mathbf{S}} \sum_{v=1}^{m} \left\| \mathbf{X}^{(v)} - \mathbf{X}^{(v)} \mathbf{Z}^{(v)} \right\|_{F}^{2} + \alpha \left\| \mathbf{Z}^{(v)} \right\|_{F}^{2} + \\ \frac{1}{2} \sum_{v=1}^{m} w_{v} \sum_{i,j,k=1}^{n} \mathbf{Z}_{jk}^{(v)} \left(\frac{\mathbf{S}_{ij}}{\sqrt{\mathbf{D}_{jj}^{(v)}}} - \frac{\mathbf{S}_{ik}}{\sqrt{\mathbf{D}_{kk}^{(v)}}} \right)^{2} + \beta \left\| \mathbf{S} - \mathbf{I} \right\|_{F}^{2} \end{split}$$

i.t. $\mathbf{Z}^{(v)} \ge 0, diag\left(\mathbf{Z}^{(v)} \right) = 0, \mathbf{s}_{i}^{T} \mathbf{1} = 1, s_{ij} \ge 0, rank\left(\mathbf{L}_{S} \right) = n - c, \end{split}$

where w_v is the weight of v-th view, $\mathbf{D}^{(v)}$ is the degree matrix of $\mathbf{S}^{(v)}$, \mathbf{L}_S is the Laplacian matrix of \mathbf{S} , and rank $(\mathbf{L}_S) = n - c$ is a rank constraint that manipulates the target graph \mathbf{S} containing exactly c connected components.

Optimization Algorithm

Since the corresponding optimization problem is not jointly convex in all variables, we choose to solve it by updating one variable while fixing other variables.

Algorithm 2: The Algorithm for Eq. (5)

Input: Multi-view data $\{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(m)}\}$ with *m* views, cluster number *c*, parameters α and β .

Initialize the weight of each view $w_v = \frac{1}{m}$.

Initialize the affinity graph $\mathbf{Z}^{(v)}$ according to Eq. (2).

Initialize the consensus graph. $\mathbf{S} = \sum_{v=1}^{m} w_v \mathbf{Z}^{(v)}$.

Output: The indicator matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ with exactly *c* connected components.

1: repeat

- 2: Update $\mathbf{Z}^{(v)}$ according to Eq. (9).
- 3: Update **S** by Algorithm 1.
- 4: Update \mathbf{F} according to Eq. (13).
- 5: Update w_v according to Eq. (6).

6: **until** converge

We evaluate the proposed method on seven benchmark datasets, compared with ten state-of-the-art methods.

Our proposed method achieves the best clustering results in the majority of cases, and the improvement is remarkable. Table 2: Clustering results of all methods on different datasets (%). The best performance is **bolded**, and the second best performance is <u>underlined</u>.

Dataset	SC_{best}	DiMSC	AMGL	MVGL	WMSC	CSMSC	GMC	LMVSC	SMVSC	CoMSC	Ours
					ACC						
3Sources	53.67	76.33	44.14	42.54	57.75	78.34	69.23	50.18	43.14	64.26	81.07
MSRC	58.95	72.38	70.67	70.48	69.00	80.48	74.76	74.71	81.43	80.86	85.24
COIL-20	72.75	76.15	79.30	75.21	76.58	75.06	79.10	75.56	61.07	71.90	80.42
Caltech-7	48.58	41.51	64.66	56.38	38.95	62.08	<u>69.20</u>	60.91	57.22	64.65	77.61
100Leaves	69.62	47.87	79.09	54.12	78.23	76.78	<u>82.38</u>	67.32	38.03	78.75	83.56
Caltech-20	41.74	28.45	49.69	57.29	33.98	47.47	45.64	47.10	61.36	53.32	68.99
MNIST	52.74	51.79	85.10	30.55	51.91	50.64	84.37	71.45	77.16	69.65	87.44
					NMI						
3Sources	49.99	63.77	18.35	27.11	49.33	70.75	54.80	30.51	24.21	59.32	70.81
MSRC	46.81	60.08	66.80	58.18	59.53	71.43	74.21	65.55	70.18	74.08	77.35
COIL-20	81.91	83.02	91.43	83.80	84.16	84.17	91.79	83.24	73.06	81.42	91.90
Caltech-7	28.99	32.10	52.76	51.63	28.08	51.82	60.56	44.33	44.96	55.96	64.51
100Leaves	86.17	70.98	<u>90.48</u>	63.96	90.44	89.05	90.25	84.64	64.92	90.42	92.48
Caltech-20	45.47	27.59	54.47	58.59	41.81	57.83	38.46	49.21	57.56	59.38	56.53
MNIST	47.13	34.08	76.08	24.04	47.31	46.13	<u>76.39</u>	63.46	62.40	64.80	77.49
					Purity						
3Sources	71.18	80.47	49.94	48.46	71.48	83.67	74.56	75.74	53.08	72.01	84.62
MSRC	60.00	72.38	74.14	70.48	71.38	80.48	79.05	75.33	81.43	81.76	85.24
COIL-20	75.25	78.94	84.37	77.78	78.19	77.56	84.79	79.08	61.72	78.94	85.00
Caltech-7	79.61	76.11	84.83	86.84	79.58	86.95	88.47	70.98	85.80	72.73	88.60
100Leaves	72.94	50.47	83.42	57.44	80.55	79.44	85.06	77.39	39.49	85.44	86.01
Caltech-20	70.54	54.83	68.33	74.85	67.29	77.91	55.49	52.48	71.32	61.12	75.02
MNIST	56.27	52.37	<u>85.43</u>	30.55	55.94	54.22	84.37	77.00	77.16	76.38	87.44
					F-score						
3Sources	48.49	70.68	38.18	44.75	50.79	73.17	60.47	41.87	38.46	60.49	75.25
MSRC	43.88	58.61	62.22	54.56	57.52	70.13	69.68	64.71	69.36	71.35	75.29
COIL-20	69.09	72.27	75.95	71.43	73.40	70.75	79.42	70.23	53.68	66.33	82.29
Caltech-7	40.01	42.26	61.41	59.77	37.78	61.74	72.17	56.37	55.46	64.92	7 9. 77
100Leaves	61.94	33.12	59.14	8.58	72.63	69.64	50.42	58.20	23.20	73.19	69.29
Caltech-20	33.21	20.10	39.78	47.05	30.54	42.30	34.03	39.78	66.27	47.72	<u>53.13</u>
MNIST	41.53	32.80	<u>74.99</u>	24.46	41.08	41.41	74.43	59.42	62.39	61.04	77.67

Parameter Analysis

Figure 5: NMI w.r.t. α and β on different datasets.

Convergence Study

Figure 6: Convergence analysis of the proposed method, where OBJ denotes the objective value.

We visualize the target graph learned by different methods, our model almost achieves a pure structured graph with a much clear clustering structure.

Conclusions

- ➤ In this paper, we propose to explore the implied data manifold by learning the topological relationship between data points.
- > To do so, we integrate multiple affinity graphs into a consensus one with the topological relevance considered.
- > An alternating iterative algorithm is designed to solve the optimization problem of the proposed model.

The experimental results show that:

- manifold topological structure is suitable and beneficial for multi-view subspace clustering tasks;
- our model is quite robust with respect to different parameter settings;
- the proposed optimization algorithm is very efficient and converges fast.
- In the future, we are interested in extending the proposed model to other machine learning framework, such as semi-supervised learning and deep learning.

Thanks for listening