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Multi-view Subspace Clustering Revisit

Subspace Clustering: given a dataset X = [x{, x5, -, x,] € R¥*™ with n data
points and k features, the self-expression based subspace clustering problem can be
defined as

min | X — XZ|[7 + a||Z|7
s.t. Z > 0,diag (Z) = 0,
where Z € R™ ™ is the similarity graph of data points, and « is a trade-off parameter.

Multi-view Subspace Clustering: when data Is presented in multiple view
(xW,x@ ... xtmy we can easily extend the above formula to a multi-view version:

" 2
min | || X _xMgz®| 44 Hzm
F
v=1

2
F

Z(v)

s.t. 2" > 0, diag (Z(”)) =0,
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Drawbacks of existing methods:

» Real-world datasets are usually sampled from a nonlinear low-dimensional manifold. But existing
clustering methods do not consider the manifold topological structure.

. -
- -

-------- Similarity on location and velocity

—_——— Similarity on topological structure

« Existing clustering methods usually adopt predefined similarity graphs as input. The graph learning
and subsequent multi-view clustering are separated. Thus the constructed graph may not be suitable
for the subsequent clustering.
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Multi-view Subspace Clustering on Topological Manifold

Our contributions:

 We argue to explore the implied data manifold by learning the topological relationship, and
propose to integrate multiple affinity graphs into a consensus one with the topological relevance
considered.

 Our method Is a unified framework which combining affinity graph constructing, topological
relevance learning, and label partitioning. And each subtask can be enhanced in a mutual
reinforcement manner.

« An effective alternating iterative algorithm is carefully designed to solve the optimization problem
of the proposed model. Experimental results on several benchmark datasets demonstrate the
effectiveness of our method.
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Multi-view Subspace Clustering on Topological Manifold

Topological Manifold Learning:

We propose to learn a more suitable manifold topological structure, such that the intrinsic similarities
can be explicitly uncovered.

Given a predefined similarity graph Z € R™*", we investigated the topological structure of data by
solving

1l 2 2
ming Z Zji (Sij —Sir)” + BIS —1[|%,
1,7, k=1
where [ is a balance parameter, I, j, and k are data point indexes.

S represents the target topological relationship matrix, and S;; denotes the data point j’s topological
relevance to i.
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Multi-view Subspace Clustering on Topological Manifold

With the multi-view subspace representation, connectivity constraint, and normalize
term, the final objective function IS:

min HX(”) X () Z®) +

Z(v) S

ool

DO |

2
v i 2

2 2 Zi ( - = ) + 418~ 17

v=l V DJJ V D

s.t. ZW) > 0, diag (Z(”)) =0,s]1=1, sij > 0,rank (Lg) =n —c,

where w,, is the weight of v-th view, D) is the degree matrix of S, Lg is the Laplacian matrix of S,
and rank (Lg) = n — c is a rank constraint that manipulates the target graph S containing exactly c
connected components.
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Optimization Algorithm

Since the corresponding optimization problem is not jointly convex in all variables,
we choose to solve it by updating one variable while fixing other variables.

Algorithm 2: The Algorithm for Eq. (5)

Input: Multi-view data {X(l) X X(m)} with m views, cluster number ¢, parameters o and
B.
1

Initialize the weight of each view w, = —-.

Initialize the affinity graph Z(") according to Eq. (2).
Initialize the consensus graph. S = > w, Z(v).
Output: The indicator matrix S € R™*"™ with exactly ¢ connected components.
1: repeat
2:  Update Z(*) according to Eq. (9).
3:  Update S by Algorithm 1.
4:  Update F according to Eq. (13).
5
6:

Update w,, according to Eq. (6).
until converge
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Experimental Results

Table 2: Clustering results of all methods on different datasets (%). The best performance is bolded, and the
second best performance is underlined.

We evaluate the proposed method on |
Dataset SCpest DIMSC AMGL MVGL WMSC CSMSC GMC LMVSC SMVSC CoMSC Ouwurs
seven benchmark datasets, compared e s 750w s S5 ww wn W wE @m s

. MSRC 5895 7238  70.67 7048  69.00 8048 7476 7471 8143 8086 8524
with ten state-of-the-art methods. COIL-20 7275 7615 7930 7521 7658 7506 79.10 7556 6107 7190 8042
Caltech7 4858 4151 6466 5638 3895 6208 6920 6091 5722 6465 77.61

100Leaves 69.62 4787 7909 5412 7823 7678 8238 6732 3803 7875 8356

Caltech-20 4174 2845 4969 5720 3398 4747 4564 4710 6136 5332 6899

MNIST 5274 5179 8510 3055 5191 5064 8437 7145 7716 6965 8744

NMI
TSources 4999 6377 1835 2701 4933 7075 5480 3051 2421 5932 7081

Our prOpOSEd method achieves the MSRC 4681 6008 6680 5818 5953 7143 7421 6555 7018 7408  77.35

COIL-20 81.91 83.02 91.43 83.80 84.16 84.17  91.79 83.24 73.06 8142  91.90

1 - - 1 Caltech-7  28.99 32.10 52.76 51.63 28.08 51.82  60.56 44.33 44.96 5596  64.51

best clustering results in the Majority  orewe 5617 7098 o048 6396 o044 905 9025 si6s 6492 9042 9248
Caltech-20 4547 27.59 54.47 58.59 41.81 57.83 38.46 49.21 57.56 59.38 56.53

Of Cases’ and the improvement iS MNIST  47.13 3408 7608 2404 4731 4613 7639 6346 6240 6480 77.49

Purity
3Sources 7118 8047 4994 4846 7148 8367 7456 7574  53.08 7201  84.62
remarkab | e. MSRC  60.00 7238  74.14 7048 7138 8048 7905 7533 8143 8176 8524

COIL-20 75.25 78.94 84.37 77.78 78.19 77.56 84.79 79.08 61.72 78.94 85.00
Caltech-7 79.61 76.11 84.83 86.84 79.58 86.95 88.47 70.98 85.80 72.73 88.60
100Leaves  72.94 50.47 83.42 57.44 80.55 79.44 85.06 77.39 39.49 85.44 86.01
Caltech-20  70.54 54.83 68.33 74.85 67.29 77.91 55.49 52.48 71.32 61.12 75.02
MNIST 56.27 52.37 85.43 30.55 55.94 54.22 84.37 77.00 77.16 76.38 87.44
F-score

3Sources 48.49 70.68 38.18 44,75 50.79 73.17 60.47 41.87 38.46 60.49 75.25
MSRC 43.88 58.61 62.22 54.56 57.52 70.13 69.68 64.71 69.36 71.35 75.29
COIL-20 69.09 72.27 75.95 71.43 73.40 70.75 79.42 70.23 53.68 66.33 82.29
Caltech-7 40.01 42.26 61.41 59.77 37.78 61.74 7217 56.37 55.46 64.92 79.77
100Leaves 61.94 33.12 59.14 8.58 72.63 69.64 50.42 58.20 23.20 73.19 69.29
Caltech-20  33.21 20.10 39.78 47.05 30.54 42.30 34.03 39.78 66.27 47.72 53.13
MNIST 41.53 32.80 74.99 24.46 41.08 41.41 74.43 59.42 62.39 61.04 77.67
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Figure 5: NMI w.r.t. o and 3 on different datasets.
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Experimental Results

Convergence Study
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Figure 6: Convergence analysis of the proposed method, where OBJ denotes the objective value.
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Experimental Results

We visualize the target graph learned by different methods, our model almost
achieves a pure structured graph with a much clear clustering structure.

(a) DIMSC (b) MVGL
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Conclusions

> In this paper, we propose to explore the implied data manifold by learning the topological relationship
between data points.
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» To do so, we integrate multiple affinity graphs into a consensus one with the topological relevance considered.

» An alternating iterative algorithm is designed to solve the optimization problem of the proposed model.

The experimental results show that:
« manifold topological structure is suitable and beneficial for multi-view subspace clustering tasks;
« our model is quite robust with respect to different parameter settings;

» the proposed optimization algorithm is very efficient and converges fast.

> In the future, we are interested in extending the proposed model to other machine learning framework, such
as semi-supervised learning and deep learning.
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Thanks for listening



