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The issues of deterministic neural networks

positive negative positive

Which model to select?
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The issues of deterministic neural networks

["Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al.]

Can we trust the prediction with such confidence?
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Bayesian deep learning is helpful here

positive negative positive

A posterior distribution over solutions:

Marginalization for prediction

With probability 1/3 With probability 1/3 With probability 1/3
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Bayesian neural networks
Approximate Bayesian inference

Laplace approx. Variational inference MCMC

Efficient yet without the 
guarantee of asymptotic 
consistency

Non-parametric and 
asymptotically exact 
yet typically with low
convergence rate

Simple yet less 
flexible
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Laplace approximation
Adapts a pre-trained DNN to BNN

[“Laplace Redux – Effortless Bayesian Deep Learning” by Daxberger et al.]

1. Find the maximum a posteriori (MAP) solution (the mode of Bayesian posterior)

2. Construct a Gaussian approximation with the Hessian of log posterior

3. Make prediction by marginalization
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The generalized Gauss-Newton (GGN) approximation
and linearized LA (LLA)

• LLA applies LA to the first-order approximation of the NN of concern

• LLA is more sensible than LA in the presence of GGN approximation
[Immer et al., 22]

• LLA can perform on par with or better than popular alternatives on 
various uncertainty quantification (UQ) tasks

• The Laplace library [Daxberger et al., 21] further substantially advances 
LLA’s applicability

where

Let gθ(x) denote the model and set an isotropic Gaussian prior. GGN approx. sets
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Further approximations are required in practice!

l The GGN matrix of size P×P is still unamenable in modern DL scenarios
(P is the number of parameters)

l Further approximations sparsifying the GGN are introduced:

Ø Diagonal and KFAC [Martens & Grosse, 15] 
approximations

Ø Concern only the last-layer inference

l However, these strategies sacrifice the fidelity of the learning outcomes as 
the approximation errors in these cases can hardly be theoretically 
measured
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Further approximations are required in practice!

l However, these strategies sacrifice the fidelity of the learning outcomes as 
the approximation errors in these cases can hardly be theoretically 
measured

l Our solution: accElerated Linearized Laplace Approximation (ELLA),
which scales LLA up to make probabilistic predictions in a more assurable
way



10

The inherent connections between Neural Tangent 
Kernels (NTKs) and LLA

• Integrating q(θ) = N (θ; θˆ, Σ) with the linear model gθlin(x) actually gives 
rise to a function-space approximate posterior

• Doing some simple math, we have

where

• The main challenge then turns into the computation and inversion of the 
gram matrix κNTK(X, X) of size NC × NC

with
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Kernel approximation of NTK enables the acceleration
of LLA

• If we can approximate κNTK(x, x’) with the inner product of some 
explicit K-dim representations of the data, i.e., ,

then

K V
VT



Random features (RFs) 
Kernel approximation
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Performer (RFs for exp(x, x’))
[Choromanski et al., 2021]

For shift-invariant kernels
[Rahimi et al., 2007]
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• Given , perform MC integration:

• Eigendecompose and get

• Kernelized solutions:

Nystrom method 
Kernel approximation
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Adapt Nyström method to approximate the NTKs of 
multi-output NNs

• Rewrite κNTK(x, x′) as a scalar-valued kernel

By Monte Carlo estimation
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Adapt Nyström method to approximate the NTKs of 
multi-output NNs

• Applying this equation to the above samples gives rise to

then we arrive at

• We compute the top-K eigenvalues λ1, ..., λK of matrix K and record the 
corresponding orthonormal eigenvectors u1, ...,uK. Then it is easy to get
the Nyström approximation of the top-K eigenfunctions:

• Finally, we have
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Implementation

• The estimation of φ on a data point x degenerates as K JVPs, which can 
be accomplished by invoking forward mode automatic differentiation
(fwAD) for K times:

where the model output gθˆ(x) and the JVP Jθˆ(x)vk are simultaneously 
computed in one single forward pass

• Prevalent DL libraries like PyTorch and Jax have already been armed with 
the capability for fwAD
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Algorithms
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Theoretical Analysis

κELLA can be reformulated as follows (in the seek of theoretical analysis)

• As desired, the upper bound of approximation error decreases along 
with the growing of the number of MC samples in Nystrom
approximation
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How the approximation errors vary w.r.t. K and M?
(MNIST, CNNs)
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The overfitting issue of ELLA and general LLA (Cifar-10,
ResNets)

ELLA Last-layer LLA

Solution: early stopping

With more training data involved, the covariance in LA, LLA, and ELLA 
shrinks and the uncertainty dissipates.



Illustrative Regression
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Cifar-10 classification
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ImageNet classification
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Results on ViT
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Thanks!


