I

S

NEURAL INFORMATION

,} ‘ PROCESSING SYSTEMS
ole

.‘..

Accelerated Linearized Laplace
Approximation for Bayesian Deep Learning

Zhijie Deng
Shanghai Jiao Tong University
Contact: zhijied@sjtu.edu.cn

Joint work with: Feng Zhou and Jun Zhu

The issues of deterministic neural networks

positive negative positive

@ @ @

Which model to select?

The issues of deterministic neural networks

confidence prediction correct

- | ' . 0 . 99.5%
, ¢ . 3 health
I ‘: ('] 0.5% y K

["'Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al.]

Can we trust the prediction with such confidence!?

Bayesian deep learning is helpful here

positive negative positive

@ @ @

S|P |& /@ &\

With probability 1/3 With probability 1/3 With probability 1/3
N
A posterior distribution over solutions: p(w|D) x p(w) Hp(yn\xn, w)
n=1

Marginalization for prediction p(y|x«, D) = /P()’|x*aW)P(W|D)dW

Bayesian neural networks
Approximate Bayesian inference

WmAP

MCMC samples

p(w|D)

Laplace approx. Variational inference MCMC
Non-parametric and
asymptotically exact

yet typically with low
convergence rate

Efficient yet without the
guarantee of asymptotic
consistency

Simple yet less
flexible

Laplace approximation
Adapts a pre-trained DNN to BNN

(a) MAP Estimation (b) Laplace Approximation (c) Prediction

[“Laplace Redux — Effortless Bayesian Deep Learning” by Daxberger et al.]

|. Find the maximum a posteriori (MAP) solution (the mode of Bayesian posterior)

A

0 = arg maxg log p(D|0) + log p(0)
2. Construct a Gaussian approximation with the Hessian of log posterior

9(0) =N(6;0,8) X7!=-V2Z (logp(D|0) +logp(6))|e_g

3. Make prediction by marginalization

The generalized Gauss-Newton (GGN) approximation
and linearized LA (LLA)

Let go(x) denote the model and set an isotropic Gaussian prior. GGN approx. sets
2_1 = Z Jé(mi)TA(wi, yz-)Jé (mz) + IP/O'(2),

where J4(x) = Veoge(x)|g_g and A(x,y) = —Vﬁg 10gp(y|g)|g=gg(-’v)

LLA applies LA to the first-order approximation of the NN of concern
96™(®) = gg(x)+Jg(x)(6—0)

* LLA is more sensible than LA in the presence of GGN approximation
[Immer et al., 22]

* LLA can perform on par with or better than popular alternatives on
various uncertainty quantification (UQ) tasks

* The Laplace library [Daxberger et al., 21] further substantially advances
LLA’s applicability

Further approximations are required in practice!

The GGN matrix of size PP is still unamenable in modern DL scenarios
(P is the number of parameters)

Further approximations sparsifying the GGN are introduced:

Diagonal and KFAC [Martens & Grosse, 15] [f
approximations

Concern only the last-layer inference @

However, these strategies sacrifice the fidelity of the learning outcomes as
the approximation errors in these cases can hardly be theoretically
measured

Further approximations are required in practice!

® However, these strategies sacrifice the fidelity of the learning outcomes as
the approximation errors in these cases can hardly be theoretically

measured

® Our solution: accElerated Linearized Laplace Approximation (ELLA),
which scales LLA up to make probabilistic predictions in a more assurable
way

The inherent connections between Neural Tangent
Kernels (NTKs) and LLA

* Integrating q(6) = N (6; 67,) with the linear model gg'"(x) actually gives
rise to a function-space approximate posterior

GP(flgs(x), krLa(x, ') with kLA (z, ') = Jé(w)ZJé(m'

* Doing some simple math, we have

)T

kLLa (e, ') = o5 (HNTK(fB, z') — kntk (T, X)[Ax v /06 + kntk (X, X)] ™ renrk (X, 33’))

where kntk(Z, Z) = Jé(iv)Jé(w’)T

* The main challenge then turns into the computation and inversion of the
gram matrix Kni (X, X) of size NC x NC

10

Kernel approximation of NTK enables the acceleration
of LLA

* If we can approximate Kytk(X, X’) with the inner product of some
explicit K-dim representations of the data, i.e., snk(z, ') = p(z)p(z') ",

\VAl

then

1 <PX90(33/)T)

(@) Y ol@) A, w)e(@) +xc/od | pl@) 2 rauia(a, @)

G

ra(@, @) ~od (p(@)p(@) T — p(@) ek |[Axly /o0 + exex]

11

Kernel approximation
Random features (RFs)

random Fourier features

sin
. W € RV*P sin | g ¢ R2V in (@)
Xor X >
COS
P For shift-invariant kernels
[Rahimi et al., 2007]
X € RPxn T = [cos(WX)T, sin(WX)T]
X € RPX7 ETX = [cos(WX)T, sin(WX)T]
SO TN O T
i 0@:7 I / 7 L / :/ O(er) / 7"
:~o 7] : A | L I
: & :E: T
| LxL L x d)li— b 835 B WS L % d| | performer (RFs for exp(x, X))
; / /i (KT / [Choromanski et al., 2021]
‘\\\ A attention mechanism V ,’I’ |\\\ Q/ \\\\ ————————————————— Y——’//’/I

N e e, e e, e, —m————————— - T o - e e - e s e e e

Figure 1: Approximation of the regular attention mechanism AV (before D~ !-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

12

Kernel approximation
Nystrom method

* Given X ={z1,...,xzn} fromgq, perform MC integration:

N
% > (@ T) (Tnr) = pyih; (), V5 > 1
n’/=1

+ Eigendecompose #(Xu, Xur) and get {(fi;, [(1), ..., ¥ (xn)]T) ;1“:1

» Kernelized solutions:

lr](w ‘B y L/ lr}(wn) 7=1..,k

n’'=1

13

Adapt Nystrom method to approximate the NTKs of
multi-output NNs

* Rewrite KnTk(X%, X') as a scalar-valued kernel
itk ((2,4), (2, 7)) = J(w,0) Jg(a,)"

By definition, the eigenfunctions can represent the spectral information of the kernel:

/ kntk ((@,4), @', 8)) Yu (e,)a(@', &) = e (@, i), Ve > 1,

while being orthonormal under q:

/wk(w,i)zbkf(az,i)q(:c,z') =1k = k'],Vk, k' > 1.
By Monte Carlo estimation

% Z KNTK ((m7i)7 (mm7im)) wk(mm’im) = 'u'k’(pk(m’i)’Vk € [K]

14

Adapt Nystrom method to approximate the NTKs of
multi-output NNs

* Applying this equation to the above samples gives rise to

M
Z F‘"NTK m’aim’)7 (wmnzm)) wk(wmazm) — uk¢k(wm’7im’)7\v’k S [K]7m, € [M]

then we arrive at

1
— K = pppr, k € [K|

M
* We compute the top-K eigenvalues A, ..., Ax of matrix K and record the
corresponding orthonormal eigenvectors uj, ...,ux. Then it is easy to get
the Nystrom approximation of the top-K eigenfunctions:
VM VM

LSl b (@), (@) = S T, I g
k=1 k

"&k (iB, 7’) =

* Finally, we have

[p(x) = [Jy(x)v1, ..., J5(x)vK] With vy, = J uk/\/»]

Implementation

* The estimation of ¢ on a data point x degenerates as K JVPs, which can

be accomplished by invoking forward mode automatic differentiation
(fwAD) for K times:

f d A
z 0 orwar > ge(a:) | ke [K]
(I Jo(x) vk

where the model output gg-(x) and the JVP Jg-(X)vy are simultaneously
computed in one single forward pass

* Prevalent DL libraries like PyTorch and Jax have already been armed with
the capability for fwAD

16

Algorithms

Algorithm 1: Build the LLA posterior.

Algorithm 2: Build .

gs: NN pre-trained by MAP; (X,Y):
training set; C: number of classes
M ,K ,op: hyper-parameters
def estimate_G(cp,X,Y,K,ag) :
G =zeros(K,K)
for (z,y) in (X,Y):
gz, Pz = (@)
Az 4 =hessian(nll(gs,y) ,gz)
G += ‘PlAw,y‘Pm
return G+ eye(K) /0§
def _q_f(p,G™1,x)
gz, Pz = (@)
R,z = ‘PwG_l‘Pc—cr
return N (gz, Kz,z)
¢ =build_p(g4, X, C, M, K)
G ! =inv(estimate_G(p,X,Y,K,03))
q_f =partial(_q_f,p,G™1)

def build_¢(g4,X,C,M,K):

def _cp(gé,C’,{vk}szl , L) :
pa = zeros(C,K)
for k in range(K):
with fwdD.enable():

Gy JUP = G(§ 4, ()
CPw[:, k] = jvup

return g, P«
Jo % —zeros (M ,dim(0))
for m in range(M):

T, =uniform_sample (X)

im =uniform_sample ([C])

J 4 x|m|=grad(gg(@m)|im],0)
{ Ak, Uk}szl = eig(Jg,XJg,x ,top = K)
for k in range(K):

Ve = J;X’uk/m

return partial (_yp 396 » C, {’Uk}szl)

17

Theoretical Analysis

KeLLa €an be reformulated as follows (in the seek of theoretical analysis)

-1
mELLA(w, wl) = Jé(w) J;_,X [Jg,ng,xAX,YJé,XJ;X -+ Jé’ng,i/O'(Q)] Jé,f(Jé (ar:)T

\ .

v o

E/

Theorem 1 (Proof in Appendix A.4). Let cp be a finite constant associated with A\, and &’ the error
of Nystrom approximation ||Jg x5 (Vs %35 <) "I 535« — Jo.xJ5 « |I- It holds that

E < ojepl + ;.

Theorem 2 (Error bound of Nystrom approximation). With probability at least 1 — 0, it holds that:

. NC 1
<\ + —c.(2 +1log 2).
S AM+1 \/M (86)

Corollary 1. With probability at least 1 — 6, the following bound exists:

- NC 1
E < open(Mars1 + ——=cx(2 +1log 5)) + 02,

VM 5

* As desired, the upper bound of approximation error decreases along
with the growing of the number of MC samples in Nystrom
approximation

18

How the approximation errors vary w.r.t. K and M?

(MNIST, CNNs)

- 8 16 32 64 128 256 512 1024 2000

-0.10

-0.05

“0.00

€Nystrém £ ||J@,XJ;X(Jg,ngx)_ng,xJ;x - Jé,xJ;x“/”Jé,ng’x”

0.7

0.6

0.5

0.4

- 0.3

- 0.1

=~ 0.0

il 8 16 32 64 128 256 512 1024 2000
K

(b)

€ELLA £ (a1 Dmex,y |FELLa(®,) — kiia(@, @) /[|kia (@,)|

19

The overfitting issue of ELLA and general LLA (Cifar-10,
ResNets)

=) Js(@a) A(ws, yi) Js(xi) + 1pfog

With more training data involved, the covariance in LA, LLA, and ELLA
shrinks and the uncertainty dissipates.

0.28 - 0.28
0.26 ﬁ 0.26
— —
= 0.24 1 Z 0.24
0.22- ResNet20 & 0.22- ResNet20
ResNet32 ResNet32
0.20 - ResNet44 0.20 - ResNet44
ResNet56 ResNet56
0 10000 20000 30000 40000 0.18 ¢ 10000 20000 30000 40000
N N
ELLA Last-layer LLA

Solution: early stopping

20

lllustrative Regression

ELLA LLA | LLA-KFAC LLA-Diag | LLA®

Figure 1: 1-D regression on y = sin 2z + €, € ~ N(0, 0.2). Red dots, central blue curves, and shaded regions
refer to the training data, mean predictions, and uncertainty respectively. The model is a pretrained multilayer
perceptron (MLP) with 3 hidden layers. As shown, the predictive uncertainty of ELLA is on par with or better

than the competitors such as LLA with KFAC approximation (LLA-KFAC), LLA with diagonal approximation
(LLA-Diag), and last-layer LLA (LLA™).

21

Cifar-10 classification

Table 1: Comparison on test accuracy (%) 1, NLL |, and ECE | on CIFAR-10. We report the average results
over 5 random runs. As the accuracy values of most methods are close, we do not highlight the best.

Method ResNet-20 ResNet-32 ResNet-44 ResNet-56
Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE
ELLA 92.5 0.233 0.009 93.5 0.215 0.008 939 0.204 0.007 944 0.187 0.007
MAP 92.6 0.282 0.039 93.5 0.292 0.041 94.0 0.275 0.039 944 0.252 0.037
MFVI-BF 92.7 0.231 0.016 93.5 0222 0.020 939 0.206 0.018 944 0.188 0.016
LILA™ 92.6 0.269 0.034 93.5 0259 0.033 940 0.237 0.028 944 0.213 0.022

LIA*-KFAC 926 0271 0.035 93,5 0.260 0.033 940 0.232 0.028 944 0.202 0.024
LLA-Diag 922 0.728 0.404 927 0.755 0430 92.8 0.778 0.445 929 0.843 0.480
LIA-KFAC 920 0.852 0.467 91.8 1.027 0.547 914 1.091 0566 89.8 1.174 0.579

=3}

BN ELLA 0l HEE ELLA
E s
2 | m MAP E B MAP
= - 7 - m
= B MFVI-BF 5 B MFVI-BF
= B LA F04{ HEE LLA'
- £ W
2 | mEm LLA'KFAC 2 | N LLA'-KFAC
e, =
Z2- 302
zu : ;
* | e | el
43}
0- ; : : : ; o0{ == 7 . , , ,
1 2 3 4 5 I 2 3 4 5
Skew intensit Skew intensi
Y

Figure 3: NLL (Left) and ECE (Right) on CIFAR-10 corruptions for models trained with ResNet-56 architecture.
Each box corresponds to a summary of the results across 19 types of skew.

22

ImageNet classification

Table 2: Comparison on test accuracy (%) 1, NLL |, and ECE | on ImageNet. We report the average results
over 3 random runs.

Method ResNet-18 ResNet-34 ResNet-50
Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE
ELILA 69.8 1.243 0.015 73.3 1.072 0.018 76.2 0948 0.018
MAP 69.8 1.247 0.026 73.3 1.081 0.035 76.2 0962 0.037
MFVI-BF 703 1.218 0.042 737 1.043 0.033 76.1 0945 0.030
_g“' = it i i E '=§tf;‘ £
Skew lntenmty] : Skew mtcnelty

Figure 5: NLL (Left) and ECE (Right) on ImageNet corruptions for models trained with ViT-B architecture.
Each box corresponds to a summary of the results across 19 types of skew.

Method Acc. NLL ECE
Results on ViT ELIA 816 0695 0.022
MAP 815 0700 0.039 23

.IC.I E PEOFE » &> On ona

"
. .: ® oovo. sovee b+ .z
e o 99900
e e v e eseey W
- .oo.o.:ozoo.
] ® CQOREPE _ PEG SF RAGRANESRNES® n
ek o .h & e "hae
. SREAY e . . . LI
L] * _PRe» "ne -
TE0T 200 L L
e L .
zoc ree - .
L] . >
z OO.. L 2 LR
:. LR LN L
LI §o:
® 200
= e Radn - -
® s & » -
[] 40 & L]
- &R B
LY -
.. . 8% » . - . e v
NG & PESG & & & 4 » Snee HeBAes on
" e " " * L]
T U O Pe & WS Ve Y B & v
she & e - Ssaea
. 000 » . 0000000
v % U A%s #%9 e
& A% © 400 SA4d & ASS P o
S0 & 900 290 4 9% 2 0 o
- . e M e on

Thanks!

24

