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Recent advances of deep reinforcement learning (DRL) has shown
promises in solving NP-hard combinatorial optimization (CO) problems
without manual injection of domain-specific expert knowledge.

However, most DRL solvers can only scale to graphs with up to
hundreds of nodes.

We address the scalability challenge by proposing DIMES
(Dlfferentiable MEta Solver).

* We introduce continuous heatmaps to compactly represent
feasible solutions.

* We employ meta-learning over problem instances to capture
the common nature across the instances.

* DIMES can scale to graphs with up to 10,000 nodes.
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Given a problem instance s, the goal is finding an optimal solution f;* from the feasible
solution space F; to minimize the cost function c: F; - R:

f& = argmin c,(f) .
fEFs

Solutions are encoded as 0/1 vectors f € {0,1}/%s!, where V, denotes the set of
variables for the problem instance s.

To learn the solution differentiably, we introduce a continuous vector 8 € R!Vs! (called a
heatmap) to parameterize a probability distribution py over feasible solution space F;:

po(f1s) < exp(Yiep, fi-6;)  subjectto f€F.
Optimize 6 by minimizing the expected cost ¢,,(8]s) = Ef.,,[cs(f)] over py:

05 = argmin Ef_p, [cs(f)].
geRIVs|



Problem Definitions

Traveling Salesman Problem (TSP):

Feasible solutions F; are tours, which
visit each node exactly once and
return to the start node at the end.

The cost c, is the sum of edge lengths
in the tour.

Variables V, corresponds to edges,
where f; ; = 1 means edge (i, ) is in
the tour.
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F, of a 5-node TSP instance
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Maximum Independent Set (MIS):

Feasible solutions F; are independent node
subsets, in which nodes have no edges to
each other.

The cost ¢, is the negation of the size of
the independent subset.

Variables V, corresponds to nodes, where
fi = 1 means node i is in the independent
subset.

w o W

F, of a 5-node MIS instance
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« Since sampling from py is inefficient, we propose to design an auxiliary distribution gg

over F;, from which sampling is efficient.
* Optimize 6 to minimize the expected cost £,(0|s) = Ef_4,[cs(f)] over qg instead of pg.

« Gradient descent (GD) with REINFORCE-based gradient estimator:
VHIEf~q9 [Cs(f)] = IE:f~q9 [(Cs(f) - b(S))Vg log do (f)]

* b(s): a baseline function to reduce the variance of the gradient estimator.
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Auxiliary Distribution Designs

(For brevity, we omit conditional notations on s.)
For TSP on n nodes:

A feasible solution f as a permutation ¢
of n nodes, where ;(0) = s (n).

 Choose the start node m¢(0) randomly:
n—1

1
5> (f) = z o qrsp (¢ |7 (0) = j).

j=0
« Chain rule in the visiting order:

n—1
CITSP(ﬂf|7Tf(0)) = 1_[ CITSP(ﬂf(i)|7Tf(< ).
i=1

« Heatmap: matrix 8 € R™" for edges.
exXp Or - (i—1),m,(0)

grsp (s (D|mp(< ) = =5

=i €XP O (i-1)m, ()
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For MIS on n nodes:

» {a}: the set of all possible orderings a
of the nodes in the independent set f.

lal

qgus(f) = z 1_[ qmis(aila<) .

a€{a}y i=1

* G(a.;): the set of nodes that have no
edge to {ay, ..., a;_1}.

« Heatmap: vector 8 € R" for nodes.
exp O,

gmis(a;la<;) = .
Zjeg(a{<i}) exp 0
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—————> Meta-learning

----- - |nstance-specific adaptation

We train a meta-network F, over a collection of problem instances C = {(k,, A;)} to
predict instance-specific heatmap 6, = Fy(kg, Ag).

We adapt parameters @ to each instance s via T gradient steps with learning rate «.
0@ =0, P =0l —av e, (68Vs), t=1..T
S - ) S - *s (pgt—l) q S ) — 4, L,
HS(t) = Fd{gt) (kg, As), t=90,..,T.

Meta-objective:
Lmeta(@1C) = Eqee |24 (6]5)].
First-order approximation of meta-gradient:
Vo Lmeta (PIC) = Egee [V¢§T)F¢§T) (ks, Asg) - |79§T){’q (9§T)|S)] .
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1. Predict an initial heatmap for the problem instance using the GNN.

Inference Procedure

Overall inference procedure has three steps:

2. Fine-tune the heatmap via REINFORCE and sampling from the auxiliary distribution.
3. Decode the heatmap into a feasible solution (Greedy / Sampling / Monte Carlo Tree Search).

e ,
Sampling from gy / \ /[ A(\
REINIlORCE
AN N o
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MIS > > >
Instance s Predict 6 e R"s!  Fine-tune 6 e R Decode  freF 8



Main Results for TSP

We directly train on
large-scale graphs.

DIMES is able to
scale up to graphs
with 10,000 nodes.

DIMES outperforms
both DRL and
supervised methods.
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Method Type TSP-500 TSP-1000 TSP-10000
Length| Drop) Time] | Length| Drop) Time] | Length] Drop)  Time |

Concorde OR (exact) 16.55" — 37.66m | 23.12° — 6.65h N/A N/A N/A
Gurobi OR (exact) 16.55 0.00%  45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (default) OR 16.55 0.00%  46.28m 23.12 0.00% 2.57h 71.77" — 8.8h
LKH-3 (less trails) OR 16.55 0.00%  3.03m 23.12 0.00% 7.73m 71.79 — 51.27m
Nearest Insertion OR 20.62 24.59% Os 28.96 25.26% Os 90.51 26.11% 6s
Random Insertion  OR 18.57 12.21% Os 26.12 12.98% Os 81.85 14.04% 4s
Farthest Insertion ~ OR 18.30 10.57% Os 25.72 11.25% Os 80.59 12.29% 6s
EAN RL+S 28.63 73.03% 20.18m 50.30 117.59% 37.07m N/A N/A N/A
EAN RL+S5+2-OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h N/A N/A N/A
AM RL+S 22.64 36.84% 15.64m 42.80 85.15% 63.97m | 43158 501.27% 12.63m
AM RL+G 20.02 20.99% 1.51m 31.15 34.75%  3.18m 141.68 97.39%  5.99m
AM RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h
GCN SL+G 29.72 79.61%  6.67m 48.62 110.29% 28.52m N/A N/A N/A
GCN SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m N/A N/A N/A
POMO+EAS-Emb  RL+AS 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-Lay RL+AS 19.35 16.92% 16.19h N/A N/A N/A N/A N/A N/A
POMO+EAS-Tab RL+AS 24.54 48.22% 11.61h 49.56 114.36% 63.45h N/A N/A N/A
Att-GCN SL+MCTS 16.97 2.54% 2.20m 23.86 3.22% 4.10m 74.93 4.39% 21.49m

RL+G 18.93 14.38%  0.97m 26.58 14.97%  2.08m 86.44 20.44%  4.65m

RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h
DIMES (ours) RL+S 18.84 13.84%  1.06m 26.3_6 14.01%  2.38m 85.75 19.48%  4.80m

RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12h

RL+MCTS 16.87 1.93%  2.92m 23.73 2.64% 6.87m 74.63 3.98%  29.83m

RL+AS+MCTS 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h
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Main Results for MIS

« DIMES significantly outperforms supervised method (Intel) in large-scale settings.
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» Despite being a general CO solver, DIMES is competitive with specially designed neural
MIS solver (LwD).

Method T SATLIB ER-[700-800] ER-[9000-11000]

etho ype SizetT Drop)l Time] | SizeT Dropl Timel] | SizeT Dropl Time]
KaMIS OR 425.96" — 37.58m | 44.877 — 52.13m | 381.31" — 7.6h
Gurobi OR 42595  000% 26.00m | 41.38  7.78%  50.00m N/A N/A N/A
Intel SL+TS N/A N/A N/A 38.80 13.43% 20.00m N/A N/A N/A
Intel SL+G 42066  148% 23.05m | 3486 2231% 6.06m | 28463 2535% 5.02m
DGL SL+TS N/A N/A N/A 37.26 16.96% 22.71m N/A N/A N/A
LwD RL+S 42222  088% 18.83m | 41.17 825%  633m | 34588 9.29%  7.56m
DIMES (ours) RL+G 42124 1.11% 24.17m | 3824 1478% 6.12m | 32050 1595% 5.21m
DIMES (ours) RL+S 42328 0.63% 20.26m | 4206 6.26% 12.0lm | 33280 12.72% 12.51lm
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« We addresses the scalability challenge of DRL for CO by proposing DIMES, which
employs a compact continuous parameterization and a meta-learning strategy.

 For TSP and MIS, DIMES can scale up to graphs with ten thousand nodes. While
trained without ground truth solutions, DIMES can outperform supervised methods.

« Future work may extend DIMES to general Mixed Integer Programming (MIP) by
reducing each integer value within range [U] to a sequence of [log, U] bits [1].

[1] Nair et al. Solving mixed integer programs using neural networks arXiv:2012.13349, 2020.
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