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Introduction

• Recent advances of deep reinforcement learning (DRL) has shown 

promises in solving NP-hard combinatorial optimization (CO) problems 

without manual injection of domain-specific expert knowledge.

• However, most DRL solvers can only scale to graphs with up to 

hundreds of nodes.

• We address the scalability challenge by proposing DIMES 

(DIfferentiable MEta Solver).

• We introduce continuous heatmaps to compactly represent 

feasible solutions.

• We employ meta-learning over problem instances to capture 

the common nature across the instances.

• DIMES can scale to graphs with up to 10,000 nodes.
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Formal Definitions

• Given a problem instance 𝑠, the goal is finding an optimal solution 𝑓𝑠
∗ from the feasible 

solution space ℱ𝑠 to minimize the cost function 𝑐𝑠: ℱ𝑠 → ℝ:

𝑓𝑠
∗ = argmin

𝑓∈ℱ𝑠

𝑐𝑠 𝑓 .

• Solutions are encoded as 0/1 vectors 𝑓 ∈ 0,1 𝒱𝑠 , where 𝒱𝑠 denotes the set of 

variables for the problem instance 𝑠.

• To learn the solution differentiably, we introduce a continuous vector 𝜃 ∈ ℝ 𝒱𝑠 (called a 

heatmap) to parameterize a probability distribution 𝑝𝜃 over feasible solution space ℱ𝑠:

𝑝𝜃 𝑓 𝑠) ∝ exp σ𝑖∈𝒱𝑠
𝑓𝑖 ⋅ 𝜃𝑖 subject to     𝑓 ∈ ℱ𝑠.

• Optimize 𝜃 by minimizing the expected cost ℓ𝑝 𝜃 𝑠 = 𝔼𝑓∼𝑝𝜃 𝑐𝑠 𝑓 over 𝑝𝜃:

𝜃𝑠
∗ = argmin

𝜃∈ℝ 𝒱𝑠

𝔼𝑓∼𝑝𝜃 𝑐𝑠 𝑓 .
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Problem Definitions

Maximum Independent Set (MIS):

• Feasible solutions ℱ𝑠 are independent node 

subsets, in which nodes have no edges to 

each other.

• The cost 𝑐𝑠 is the negation of the size of 

the independent subset.

• Variables 𝒱𝑠 corresponds to nodes, where 

𝑓𝑖 = 1 means node 𝑖 is in the independent 

subset.

Traveling Salesman Problem (TSP):

• Feasible solutions ℱ𝑠 are tours, which 

visit each node exactly once and 

return to the start node at the end.

• The cost 𝑐𝑠 is the sum of edge lengths 

in the tour.

• Variables 𝒱𝑠 corresponds to edges, 

where 𝑓𝑖,𝑗 = 1 means edge 𝑖, 𝑗 is in 

the tour.

…

ℱ𝑠 of a 5-node TSP instance ℱ𝑠 of a 5-node MIS instance

…
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Gradient-based Optimization

• Since sampling from 𝑝𝜃 is inefficient, we propose to design an auxiliary distribution 𝑞𝜃
over ℱ𝑠, from which sampling is efficient.

• Optimize 𝜃 to minimize the expected cost ℓ𝑞 𝜃 𝑠 = 𝔼𝑓∼𝑞𝜃 𝑐𝑠 𝑓 over 𝑞𝜃 instead of 𝑝𝜃 .

• Gradient descent (GD) with REINFORCE-based gradient estimator:

𝛻𝜃𝔼𝑓∼𝑞𝜃 𝑐𝑠 𝑓 = 𝔼𝑓∼𝑞𝜃 𝑐𝑠 𝑓 − 𝑏 𝑠 𝛻𝜃 log 𝑞𝜃 𝑓 .

• 𝑏 𝑠 : a baseline function to reduce the variance of the gradient estimator.

Illustration 

for TSP

GD GD



6

Auxiliary Distribution Designs

(For brevity, we omit conditional notations on 𝑠.)

For TSP on 𝑛 nodes:

• A feasible solution 𝑓 as a permutation 𝜋𝑓
of 𝑛 nodes, where 𝜋𝑓 0 = 𝜋𝑓 𝑛 .

• Choose the start node 𝜋𝑓 0 randomly:

𝑞𝜃
TSP 𝑓 ≔ ෍

𝑗=0

𝑛−1
1

𝑛
⋅ 𝑞TSP 𝜋𝑓 𝜋𝑓 0 = 𝑗 .

• Chain rule in the visiting order:

𝑞TSP 𝜋𝑓 𝜋𝑓 0 ≔ෑ

𝑖=1

𝑛−1

𝑞TSP 𝜋𝑓 𝑖 𝜋𝑓 < 𝑖 .

• Heatmap: matrix 𝜃 ∈ ℝ𝑛×𝑛 for edges.

𝑞TSP 𝜋𝑓 𝑖 𝜋𝑓 < 𝑖 ≔
exp𝜃𝜋𝑓 𝑖−1 ,𝜋𝑓 𝑖

σ𝑗=𝑖
𝑛 exp 𝜃𝜋𝑓 𝑖−1 ,𝜋𝑓 𝑗

.

For MIS on 𝑛 nodes:

• 𝑎 𝑓: the set of all possible orderings 𝑎

of the nodes in the independent set 𝑓.

𝑞𝜃
MIS 𝑓 ≔ ෍

𝑎∈ 𝑎 𝑓

ෑ

𝑖=1

𝑎

𝑞MIS 𝑎𝑖 𝑎<𝑖 .

• 𝒢(𝑎<𝑖): the set of nodes that have no 

edge to 𝑎1, … , 𝑎𝑖−1 .

• Heatmap: vector 𝜃 ∈ ℝ𝑛 for nodes.

𝑞MIS 𝑎𝑖 𝑎<𝑖 ≔
exp𝜃𝑎𝑖

σ
𝑗∈𝒢 𝑎 <𝑖

exp𝜃𝑗
.
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Meta-Learning Framework

• We train a meta-network 𝐹𝛷 over a collection of problem instances 𝒞 = 𝜅𝑠, 𝐴𝑠 to 

predict instance-specific heatmap 𝜃𝑠 = 𝐹𝛷 𝜅𝑠, 𝐴𝑠 .

• We adapt parameters 𝛷 to each instance 𝑠 via 𝑇 gradient steps with learning rate 𝛼.

𝛷𝑠
0
= 𝛷, 𝛷𝑠

𝑡
= 𝛷𝑠

𝑡−1
− 𝛼𝛻

𝛷𝑠
𝑡−1 ℓ𝑞 𝜃𝑠

𝑡−1
𝑠 , 𝑡 = 1,… , 𝑇,

𝜃𝑠
𝑡
= 𝐹

𝛷𝑠
𝑡 𝜅𝑠, 𝐴𝑠 , 𝑡 = 0,… , 𝑇.

• Meta-objective:

ℒmeta 𝛷 𝒞 = 𝔼𝑠∈𝒞 ℓ𝑞 𝜃𝑠
𝑇
𝑠 .

• First-order approximation of meta-gradient:

𝛻𝛷ℒmeta 𝛷 𝒞 ≈ 𝔼𝑠∈𝒞 𝛻
𝛷𝑠

𝑇 𝐹
𝛷𝑠

𝑇 𝜅𝑠, 𝐴𝑠 ⋅ 𝛻
𝜃𝑠

𝑇 ℓ𝑞 𝜃𝑠
𝑇
𝑠 .

𝛷𝑠1
∗ 𝛷𝑠2

∗

𝛷𝑠3
∗𝛷 Meta-learning

Instance-specific adaptation
𝛻ℒmeta

𝛻ℓ1 𝛻ℓ2

𝛻ℓ3
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Inference Procedure

Overall inference procedure has three steps:

1. Predict an initial heatmap for the problem instance using the GNN.

2. Fine-tune the heatmap via REINFORCE and sampling from the auxiliary distribution.

3. Decode the heatmap into a feasible solution (Greedy / Sampling / Monte Carlo Tree Search). 

TSP

MIS

Predict Fine-tune Decode𝜃𝑠
0
∈ ℝ 𝒱𝑠 𝜃𝑠

𝑇
∈ ℝ 𝒱𝑠 𝑓𝑠

∗ ∈ ℱ𝑠Instance 𝑠

REINFORCE

Sampling from 𝑞𝜃
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Main Results for TSP

• We directly train on 

large-scale graphs.

• DIMES is able to 

scale up to graphs 

with 10,000 nodes.

• DIMES outperforms 

both DRL and 

supervised methods.
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Main Results for MIS

• DIMES significantly outperforms supervised method (Intel) in large-scale settings.

• Despite being a general CO solver, DIMES is competitive with specially designed neural 

MIS solver (LwD). 



11

Conclusion

• We addresses the scalability challenge of DRL for CO by proposing DIMES, which 

employs a compact continuous parameterization and a meta-learning strategy.

• For TSP and MIS, DIMES can scale up to graphs with ten thousand nodes. While 

trained without ground truth solutions, DIMES can outperform supervised methods.

• Future work may extend DIMES to general Mixed Integer Programming (MIP) by 

reducing each integer value within range 𝑈 to a sequence of log2 𝑈 bits [1].

[1] Nair et al. Solving mixed integer programs using neural networks arXiv:2012.13349, 2020.


