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Problem formulation

Reward RL Policy

Policy IRL Reward

Reinforcement Learning (RL) & Inverse Reinforcement Learning (IRL)

reward

Imitation Learning Problem: Apprenticeship Learning via IRL

Question

Can we generalize modern IRL algorithms and improve them upon the rich foundation
of optimization studies?



Motivation

Mirror Descent (MD)'
For sequences {w;}!_,, {F;}1_,, and a convex function Q:
VQ(wt+1) = VQ(U)f) — T]tVFt (U)f)
VQ links the parametric space of w; € W to the dual space.

Adversarial Imitation Learning (AIL)?

T

(W Env.)

’

¢ AlL tries to solve an optimization problem “directly.”

¢ AIL does not analyze the convergence with unreliable trajectories in
real-world problems.

¢ Through the lens of geometries, AlL does not ensure unbiased progression
of its cost.

L Nemirovsky & Yudin (1979). Complexity of Problems and Efficiency of Optimization Methods
2Ho & Ermon (2016). Generative Adversarial Imitation Learning. In NeurlPS



Imitation learning in regularized MDPs

Let the cost be represented with the Bregman divergence®
With the given action space A, it is defiend as

Do(n|| #°) = Q(x°) — R(#°) —(VQUF*), 7° — 7°),,

where 7¢ and # denote arbitrary policies for a given state s.
* Many of the AlL models can be understood with Bregman divergences®.

Definition 1. (Regularized reward operators)
Define the regularized reward operator ¥, as

VYr(s,a) = (s, a;m) — (7%, VQ(WS)>A+ Q(m?),

for Q' (s, ;m) = VQ(r®) = [VpQ(P)]

p=m(:|s)’

= RL of = with reward function v is equivalent to minimizing Dq(7*|| #°).

3Bregman (1969). The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming.

4Jeon et al. (2021). Regularized Inverse Reinforcement Learning. In ICLR.



The MD-IRL theory: RL-IRL as a proximal method
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The MD-IRL theory: RL-IRL as a proximal method

_Policy Space__Reward Space.
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1. Policy Space > Reward Space (¢; € ¥, (II)).



The MD-IRL theory: RL-IRL as a proximal method
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1. Policy Space > Reward Space (¢; € ¥, (II)).
2. Update rewards using MD update rules (MD-IRL).



The MD-IRL theory: RL-IRL as a proximal method
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1. Policy Space > Reward Space (¢; € ¥, (II)).
2. Update rewards using MD update rules (MD-IRL).
3. Reward Space > Policy Space (VQ*, typically by RL).



MD update rules

The proximal form of the MD update is alternatively written as®
miEier‘glvize <VFt(wt), wfwt>w+ atDQ(w H wt),
where a; := 1/, denotes an inverse of the current step size ;.

We hypothesize on existence of a random process {7z + } 72, where each estimation
T ¢ Yesides in a closed, convex neighborhood of 7z, generated by an arbitrary
estimation algorithm.

Then, the cost is Do} || 73..), thus update are derived by solving the problem:
m;r}lerﬁuze<VDQ(7rt H )8 7rs—7rts>A+ OZtDQ(']TSH )
V() -VARS )
— mlnlmlze DQ( || ) Q(WSHWf)—i-atDQ(wusf)
= mlTrglererlslze meDa (7°||75 )+ (1—n¢) Do (|| 75) Vs e S,

estimated expert learning agent

where the gradient of Dq, is taken with respect to its first argument ;.

5Beck et al. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization.



Online mirror descent on imitation learning
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Hlustrations of an MD-IRL process.

minimize i Do (°|| 75 )+ (1—m) Da(7°||77)
s S p —_——

estimated expert learning agent



Online mirror descent on imitation learning agents
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Examples of MD on Gaussian policy distributions.



Convergence analyses

Define atemporal cost function at the time step ¢ as

f ()= v Dalme( - 57| e - 1517)).

Theorem 1 (Stepsize).

.. limTﬁwEleT[Zzo DQ(ﬂ'*( “|5)
condition is satisfied.

1. flim¢ 00 e = 0, then T €N, n<T, and ¢>0 exist s.t. Er, [ fr(7r, 7r)] > 75
4

2. f {ne}ticp+ IS = = then ]ETLT[ f:ODQ(m(-Bi) WT(-\SZ-))] =0(1/T).

7r(+]s:))] = 0if and only if a step size




Convergence analyses

Define atemporal cost function at the time step ¢ as

f ()= v Dalme( - 57| e - 1517)).

Theorem 1 (Stepsize).

.. limTﬁwEleT[Zzo DQ(ﬂ'*( “|5)
condition is satisfied.
1. flim¢ 00 e = 0, then T €N, n<T, and ¢>0 exist s.t. Er, [ fr(7r, 7r)] > 75

2. f {ne}ticp+ IS = t%’ then ]ETLT[ f:ODQ(m(-Bi) WT(-\SZ-))] =0(1/T).

7r(+]s:))] = 0if and only if a step size

Theorem 2 (Optimal cases).

Assume 71 # mp and infren E[f (7, 7)] = 0. Then, E[f(m:, )] = 0if and only if
Yooy me = oo. If n, = m1, then there exist c1, c2 € (0, 1) such that
c] AL < Ap < ' Aq, for Ay = sup, g Erp, [DQ(WEHTQS)] .




Convergence analyses

Define a temporal cost function at the time step ¢ as
F(me,m) =320 7 Da(me( - |5§t))H Tyt (- |Sz('t)))a
Theorem 1 (Stepsize).

.. limTﬁooEﬁ:T[Zfio DQ(ﬂ‘* (-]s3)
condition is satisfied.
1. If limy oo m: = 0, then T €N, n<T, and c¢>0 exist s.t. IETLT[fT(wT, TT)] 2 F—=s

2. If {ne}oewt 170 = 77, then Evy [ 3220 Da(m(-]s:) || (-]5:))] = O(1/T).

7r(+]s:))] = 0if and only if a step size

Theorem 2 (Optimal cases).

Assume 71 # mg and infren E[f(r, )] = 0. Then, E[f(m, )] = 0if and only if
Yooy me = 0. If ;. = 1, then there exist c1, c2 € (0, 1) such that
¢f 'Ay < Ap < ¢ U Ay, for Ay = sup, g Ery, [Da(ms|n)].

Proposition 1 (General cases).

Assume that 7z ¢ II, hence infrcn E[f (7, )] > 0. If the step sizes satisfies the
proposed step size conditions, then lim; .y~ 7' Da(m(-[s:)||m:( - |s:))
converges to 0 almost surely.




Convergence analyses

Define a temporal cost function at the time step ¢ as
f (1) =20 7 Dame( - |5 (- | 57),

Step size considerations
Two conditions of {n;}?°, to guarantee convergence.
e Convergent sequence & divergent series:

limy_oom; = 0 and ooy e = 0.
e Convergent series of squared terms:

Yoo me =00 and Yoo mE < oo




Convergence analyses

Define a temporal cost function at the time step ¢ as
f (1) =20 7 Dame( - |5 (- | 57),

Step size considerations
Two conditions of {n;}?2, to guarantee convergence.

e Convergent sequence & divergent series:

limy_oom; = 0 and ooy e = 0.
e Convergent series of squared terms:

Yoo e =00 and Yoo ni < oo

A regret bound

In the optimal case of infrcr E[f (7, 7¢)] = 0, the regret is bounded to O(1/T). When
infrern E[f (7, 7¢)] > 0 when the step size satisfy conditions above. Thus, the regret is
bounded to O(1/T') even for the general case.




Algorithm: MD-IRL on an adversarial framework

Dual discriminators: neural network parameters 6, ¢, and v are presented
representing agent policy, reward, and expert policy functions.

* Matching overall state densities D¢(s) = o(d¢(s)).
« Imitating specific behavior

Dy(s,a; 6,¢) = o(log{m,(als) /ma(als)} + de(s)).
Define the objective of ¢ as direct interpretation of the update rule:
L4, = B[ Dalmo(-18)|m(-15)) + A=) Da(ma(- |5)|mo(-]))],

with adaptlvely adjusted step size coefficient n, and a trajectory 7;.

Deﬁne Mirror Descent Adversarial Inverse Reinforcement Learning (MD-AIRL) :
1/);}(8,@) = AYy(s,a) + de(s), AeRT

Train RL policy 7y with 1&;} using the RAC algorithm®

6Yamg et al. (2019). A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning. In NeurlPS.



Experimental results: discrete action problems

|A| = 10? |A] = 10° |A| = 10*

Method RAIRL MD-AIRL RAIRL MD-AIRL RAIRL MD-AIRL

Shannon  2.55£1.59 2.28+1.20 140.3+87.5 125.3+61 o
Tsalis 0.21+£0.13 0.11+0.04 0.55+0.13 0.24+0.03 4.95+23 4.21+0.2
exp 0.27+£0.17 0.13+£0.06 0.55+0.12 0.23+0.03 506+24 4.97+0.7
cos 0.05+£0.04 0.02£0.01 0.03+£0.02 0.01£0.01 021£0.6 0.05£0.1
sin 034+£025 012+£0.04 3824346 1.07+0.75 812+38 7.59+1.0

SHANNON TSALLIS EXP cos SIN
— MD-AIR:L 3
— RAIRL i 1E-2

Bregman div.




Experimental results: continuous action problems

Shannon regularizer

Tsallis regularizer

Hopper Walkerzd ..o HalfCheetah Ant
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= = 1o o1s o2 P in1s 2 11115 o2 O 1 11 15 2
Method e=10.01 =05 Method e=0.01 =05
= | RAIRL (Shannon) ~ 3636.03 £391.09  3573.74 % 508.14 RAIRL (shannon) 4354.15 £ 63.83  4216.99 £ 661.17
§ MD-AIRL (Shannon) ~ 3669.25 4+ 177.78  3653.31 + 267.87 MD-AIRL (Shannon) ~ 4373.17 +68.12  4337.18 + 106.40
2 RAIRL (Tsalls) 367112 £32232  3576.17 + 515.75 RAIRL (Tsaliis) 436413 £68.09  4216.67 + 248.08
MD-AIRL (Tsalis) ~ 3730.14 +63.09  3701.24 + 205.68 MD-AIRL (Tsalls) ~ 4388.87 +73.19  4247.44+ 266.73
R | RAIRL (shannon) 2856.56 £939.9  2451.00 + 1392.6 RAIRL (shannon) ~ 4493.74 £383.04  3777.78 +505.78
5 | MD-AIRL (Shannon)  3386.38 +953.59  3252.65 £1395.7 = | MD-AIRL (Shannon)  4658.29 +201.37  4284.38 £ 329.79
<
S| RAIRL (Tsalis) 2731.84£1058.7  2435.10 + 1555.2 <[ RAIRL (Tsalis) 4359.62 £168.46  3660.22 % 508.54
S | MD-AIRL (Tsals) ~ 3624.00 992.63 3093.54 + 963.96 MD-AIRL (Tsalls) ~ 4705.25 +130.53  4127.37 + 457.25
Shannon regularizer Tsallis regularizer
Hopper IMD-AIRL. Hopper| IMD-AIRL
PP [CIRAIRL PP [EIRAIRL
Walker2d Walker2d|
HalCheetah HalCheetah
Ant ]
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Thank you!

Robust Imitation via
Mirror Descent Inverse Reinforcement Learning
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