Robust Imitation via Mirror Descent Inverse Reinforcement Learning #### NeurIPS 2022 Dong-Sig Han Hyunseo Kim Hyundo Lee Je-Hwan Ryu Byoung-Tak Zhang Artificial Intelligence Institute, Seoul National University #### **Problem formulation** Reinforcement Learning (RL) & Inverse Reinforcement Learning (IRL) Imitation Learning Problem: Apprenticeship Learning via IRL ## Question Can we generalize modern IRL algorithms and improve them upon the rich foundation of optimization studies? #### **Motivation** #### Mirror Descent (MD)¹ For sequences $\{w_t\}_{t=1}^T$, $\{F_t\}_{t=1}^T$, and a convex function Ω : $$\nabla \Omega(w_{t+1}) = \nabla \Omega(w_t) - \eta_t \nabla F_t(w_t)$$ $\nabla\Omega$ links the parametric space of $w_t \in \mathcal{W}$ to the dual space. ## Adversarial Imitation Learning (AIL)² - · AIL tries to solve an optimization problem "directly." - AIL does not analyze the convergence with unreliable trajectories in real-world problems. - Through the lens of geometries, AIL does not ensure unbiased progression of its cost. ¹Nemirovsky & Yudin (1979). Complexity of Problems and Efficiency of Optimization Methods ²Ho & Ermon (2016). Generative Adversarial Imitation Learning. In NeurIPS ## **Imitation learning in regularized MDPs** Let the cost be represented with the **Bregman divergence**³ With the given action space A, it is defiend as $$D_{\Omega}(\pi^{s} \| \, \hat{\pi}^{s}) \coloneqq \Omega(\pi^{s}) - \Omega(\hat{\pi}^{s}) - \left\langle \nabla \Omega(\hat{\pi}^{s}), \, \pi^{s} - \hat{\pi}^{s} \right\rangle_{\!\!\!A},$$ where π^s and $\hat{\pi}$ denote arbitrary policies for a given state s. * Many of the AIL models can be understood with Bregman divergences⁴. ## Definition 1. (Regularized reward operators) Define the regularized reward operator Ψ_{Ω} as $$\psi_{\pi}(s, a) := \Omega'(s, a; \pi) - \langle \pi^s, \nabla \Omega(\pi^s) \rangle_{A} + \Omega(\pi^s),$$ for $$\Omega'(s,\cdot;\pi) \coloneqq \nabla \Omega(\pi^s) = \left[\nabla_p \Omega(p)\right]_{p=\pi(\cdot|s)}$$. \Rightarrow RL of π with reward function $\psi_{\hat{\pi}}$ is equivalent to minimizing $D_{\Omega}(\pi^s || \hat{\pi}^s)$. ³Bregman (1969). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. ⁴Jeon et al. (2021). Regularized Inverse Reinforcement Learning. In ICLR. 1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$). - 1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$). - 2. Update rewards using MD update rules (MD-IRL). - 1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$). - 2. Update rewards using MD update rules (MD-IRL). - 3. Reward Space \triangleright Policy Space ($\nabla \Omega^*$, typically by RL). ## MD update rules The proximal form of the MD update is alternatively written as⁵ $$\underset{w \in \mathcal{W}}{\operatorname{minimize}} \left\langle \nabla F_t(w_t), \ w - w_t \right\rangle_{\mathcal{W}} + \alpha_t D_{\Omega}(w \| w_t),$$ where $\alpha_t := 1/\eta_t$ denotes an inverse of the current step size η_t . We hypothesize on existence of a random process $\{\bar{\pi}_{E,t}\}_{t=1}^{\infty}$ where each estimation $\bar{\pi}_{E,t}$ resides in a closed, convex neighborhood of π_E , generated by an arbitrary estimation algorithm. Then, the cost is $D_{\Omega}(\pi_t^s || \bar{\pi}_{E,t}^s)$, thus update are derived by solving the problem: $$\begin{aligned} & \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \underbrace{\left\langle \nabla D_{\Omega} \left(\boldsymbol{\pi}_{t}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right), \, \boldsymbol{\pi}^{s} - \boldsymbol{\pi}_{t}^{s} \right\rangle_{\!\!\!A} + \alpha_{t} \, D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \, \boldsymbol{\pi}_{t}^{s} \right) \right. \\ & \iff \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \, D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right) - D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right) + \alpha_{t} D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right) \right. \\ & \iff \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \, \eta_{t} \underbrace{D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right) + \left(1 - \eta_{t}\right) \underbrace{D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right)}_{\text{learning agent}} \quad \forall s \in \mathcal{S}, \end{aligned}$$ where the gradient of D_{Ω} is taken with respect to its first argument π_t^s . ⁵Beck et al. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. ## Online mirror descent on imitation learning Illustrations of an MD-IRL process. $$\underset{\pi^{s} \in \Pi^{s}}{\operatorname{minimize}} \ \eta_{t} \underbrace{D_{\Omega} \big(\pi^{s} \big\| \bar{\pi}^{s}_{E,t} \big)}_{\text{estimated expert}} + (1 - \eta_{t}) \underbrace{D_{\Omega} \big(\pi^{s} \big\| \pi^{s}_{t} \big)}_{\text{learning agent}}$$ ## Online mirror descent on imitation learning agents Examples of MD on Gaussian policy distributions. #### **Define** a temporal cost function at the time step t as $$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$ #### Theorem 1 (Stepsize). - ... $\lim_{T\to\infty} \mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = 0$ if and only if a step size condition is satisfied. - 1. If $\lim_{t\to\infty} \eta_t = 0$, then $T \in \mathbb{N}$, n < T, and c > 0 exist s.t. $\mathbb{E}_{\tau_{1:T}} \left[f_T(\pi_T, \tau_T) \right] \ge \frac{c}{T-n}$. - 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = \mathcal{O}(1/T)$. #### **Define** a temporal cost function at the time step t as $$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$ #### Theorem 1 (Stepsize). $\dots \lim_{T \to \infty} \mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot | s_i) \Big\| \pi_T(\cdot | s_i) \Big) \Big] = 0$ if and only if a step size condition is satisfied. - 1. If $\lim_{t\to\infty}\eta_t=0$, then $T\in\mathbb{N}$, n< T, and c>0 exist s.t. $\mathbb{E}_{\tau_{1:T}}\big[f_T(\pi_T,\tau_T)\big]\geq \frac{c}{T-n}$. - 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = \mathcal{O}(1/T)$. #### Theorem 2 (Optimal cases). Assume $\pi_1 \neq \pi_E$ and $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] = 0$. Then, $\mathbb{E}\big[f(\pi_t, \tau_t)\big] = 0$ if and only if $\sum_{t=1}^\infty \eta_t = \infty$. If $\eta_t \equiv \eta_1$, then there exist $c_1, c_2 \in (0, 1)$ such that $c_1^{T-1} \cdot A_1 \leq A_T \leq c_2^{T-1} \cdot A_1$, for $A_t = \sup_{s \in \mathcal{S}} \mathbb{E}_{\tau_{1:t}} \Big[D_\Omega(\pi_E^s \| \pi_t^s)\Big]$. #### **Define** a temporal cost function at the time step t as $$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$ #### Theorem 1 (Stepsize). ... $\lim_{T\to\infty} \mathbb{E}_{\tau_1:T} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \big| \big| \pi_T(\cdot|s_i) \Big) \Big] = 0$ if and only if a step size - condition is satisfied. - 1. If $\lim_{t\to\infty} \eta_t = 0$, then $T \in \mathbb{N}$, n < T, and c > 0 exist s.t. $\mathbb{E}_{\tau_{1:T}} \left[f_T(\pi_T, \tau_T) \right] \ge \frac{c}{T-r}$. 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_1,\tau}\left[\sum_{i=0}^{\infty} D_{\Omega}\left(\pi_*(\cdot|s_i) \middle\| \pi_T(\cdot|s_i)\right)\right] = \mathcal{O}(1/T)$. #### Theorem 2 (Optimal cases). Assume $\pi_1 \neq \pi_E$ and $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] = 0$. Then, $\mathbb{E}[f(\pi_t, \tau_t)] = 0$ if and only if $\sum_{t=1}^{\infty} \eta_t = \infty$. If $\eta_t \equiv \eta_1$, then there exist $c_1, c_2 \in (0, 1)$ such that $c_1^{T-1} \cdot A_1 \leq A_T \leq c_2^{T-1} \cdot A_1$, for $A_t = \sup_{s \in S} \mathbb{E}_{\tau_{1:t}} [D_{\Omega}(\pi_E^s || \pi_t^s)]$. #### Proposition 1 (General cases). Assume that $\pi_E \notin \Pi$, hence $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] > 0$. If the step sizes satisfies **the** proposed step size conditions, then $\lim_{t\to\infty}\sum_{i=0}^{\infty}\gamma^i D_{\Omega}(\pi_*(\cdot|s_i)||\pi_t(\cdot|s_i))$ converges to 0 almost surely. **Define** a temporal cost function at the time step t as $$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$ #### Step size considerations Two conditions of $\{\eta_t\}_{t=1}^{\infty}$ to guarantee convergence. • Convergent sequence & divergent series: $$\lim_{t \to \infty} \eta_t = 0$$ and $\sum_{t=1}^{\infty} \eta_t = \infty$. Convergent series of squared terms: $$\sum_{t=1}^{\infty} \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$ **Define** a temporal cost function at the time step t as $$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$ #### Step size considerations Two conditions of $\{\eta_t\}_{t=1}^{\infty}$ to guarantee convergence. Convergent sequence & divergent series: $$\lim_{t\to\infty}\eta_t=0$$ and $\sum_{t=1}^\infty\eta_t=\infty.$ Convergent series of squared terms: $$\sum_{t=1}^{\infty} \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$ ## A regret bound In the optimal case of $\inf_{\pi\in\Pi}\mathbb{E}[f(\pi,\tau_t)]=0$, the regret is bounded to $\mathcal{O}(1/T)$. When $\inf_{\pi\in\Pi}\mathbb{E}[f(\pi,\tau_t)]>0$ when the step size satisfy conditions above. Thus, the regret is bounded to $\mathcal{O}(1/T)$ even for the general case. ## Algorithm: MD-IRL on an adversarial framework **Dual discriminators:** neural network parameters θ , ϕ , and ν are presented representing agent policy, reward, and expert policy functions. - Matching overall state densities $D_{\xi}(s) = \sigma(d_{\xi}(s))$. - Imitating specific behavior $D_{\nu}(s,a;\theta,\xi) = \sigma \left(\log \left\{\pi_{\nu}(a|s) \big/ \pi_{\theta}(a|s)\right\} + d_{\xi}(s)\right).$ *Define* the objective of ϕ as direct interpretation of the update rule: $$\mathcal{L}_{\psi_{\phi}} = \mathbb{E}_{s \sim \bar{\tau}_t} \Big[\eta_t D_{\Omega} \big(\pi_{\phi}(\cdot \mid s) \big\| \pi_{\nu}(\cdot \mid s) \big) + (1 - \eta_t) D_{\Omega} \big(\pi_{\phi}(\cdot \mid s) \big\| \pi_{\theta}(\cdot \mid s) \big) \Big],$$ with adaptively adjusted step size coefficient η_t and a trajectory $\bar{\tau}_t$. Define Mirror Descent Adversarial Inverse Reinforcement Learning (MD-AIRL): $$\psi_{\phi}^{\lambda}(s, a) = \lambda \, \psi_{\phi}(s, a) + d_{\xi}(s), \qquad \lambda \in \mathbb{R}^{+}$$ Train RL policy π_{θ} with ψ_{ϕ}^{λ} using the RAC algorithm⁶ ⁶ Yang et al. (2019). A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning. In NeurIPS. # **Experimental results: discrete action problems** | | $ \mathcal{A} =10^2$ | | $ A = 10^3$ | | $ \mathcal{A} =10^4$ | | |---------|----------------------|-----------------------------------|------------------|------------------------------|----------------------|----------------------------------| | Method | RAIRL | MD-AIRL | RAIRL | MD-AIRL | RAIRL | MD-AIRL | | Shannon | 2.55 ± 1.59 | $\textbf{2.28} \pm \textbf{1.20}$ | 140.3 ± 87.5 | 125.3 ± 61 | - | - | | Tsallis | 0.21 ± 0.13 | 0.11 ± 0.04 | 0.55 ± 0.13 | $\boldsymbol{0.24 \pm 0.03}$ | 4.95 ± 2.3 | 4.21 ± 0.2 | | exp | 0.27 ± 0.17 | 0.13 ± 0.06 | 0.55 ± 0.12 | 0.23 ± 0.03 | 5.06 ± 2.4 | $\boldsymbol{4.97 \pm 0.7}$ | | cos | 0.05 ± 0.04 | $\boldsymbol{0.02 \pm 0.01}$ | 0.03 ± 0.02 | 0.01 ± 0.01 | 0.21 ± 0.6 | 0.05 ± 0.1 | | sin | 0.34 ± 0.25 | 0.12 ± 0.04 | 3.82 ± 3.46 | $\boldsymbol{1.07 \pm 0.75}$ | 8.12 ± 3.8 | $\textbf{7.59} \pm \textbf{1.0}$ | ## **Experimental results: continuous action problems** | Method | | $\varepsilon = 0.01$ | $\varepsilon = 0.5$ | | |----------|--------------------------------------|--|--|--| | Hopper | RAIRL (Shannon)
MD-AIRL (Shannon) | $\begin{matrix} 3636.03 \pm 391.09 \\ \textbf{3669.25} \pm \textbf{177.78} \end{matrix}$ | $\begin{matrix} 3573.74 \pm 508.14 \\ \textbf{3653.31} \pm \textbf{267.87} \end{matrix}$ | | | | RAIRL (Tsallis)
MD-AIRL (Tsallis) | 3671.12 ± 322.32
$\mathbf{3730.14 \pm 63.09}$ | 3576.17 ± 515.75
3701.24 ± 205.68 | | | Walker2d | RAIRL (Shannon)
MD-AIRL (Shannon) | 2856.56 ± 939.9
$\mathbf{3386.38 \pm 953.59}$ | 2451.00 ± 1392.6
3252.65 ± 1395.7 | | | | RAIRL (Tsallis)
MD-AIRL (Tsallis) | 2731.84 ± 1058.7
3624.00 ± 992.63 | 2435.10 ± 1555.2
3093.54 ± 963.96 | | | Method | | $\varepsilon = 0.01$ | $\varepsilon = 0.5$ | | |-------------|--------------------------------------|--|---|--| | HalfCheetah | RAIRL (Shannon)
MD-AIRL (Shannon) | 4354.15 ± 63.83
4373.17 ± 68.12 | 4216.99 ± 661.17
4337.18 ± 106.40 | | | | RAIRL (Tsallis)
MD-AIRL (Tsallis) | 4364.13 ± 68.09
4388.87 ± 73.19 | 4216.67 ± 248.08
4247.44 ± 266.73 | | | Ant | RAIRL (Shannon)
MD-AIRL (Shannon) | 4493.74 ± 383.04
4658.29 ± 201.37 | 3777.78 ± 505.78
$\mathbf{4284.38 \pm 329.79}$ | | | | RAIRL (Tsallis)
MD-AIRL (Tsallis) | 4359.62 ± 168.46
4705.25 ± 130.53 | 3660.22 ± 508.54
$\mathbf{4127.37 \pm 457.25}$ | | # Robust Imitation via Mirror Descent Inverse Reinforcement Learning arXiv: https://arxiv.org/abs/2210.11201 BI lab: https://bi.snu.ac.kr Dong-Sig Han: https://dshan4585.github.io {dshan, hskim, hdlee, jhryu, btzhang}@bi.snu.ac.kr