

Robust Imitation via Mirror Descent Inverse Reinforcement Learning

NeurIPS 2022

Dong-Sig Han Hyunseo Kim Hyundo Lee

Je-Hwan Ryu Byoung-Tak Zhang

Artificial Intelligence Institute, Seoul National University

Problem formulation

Reinforcement Learning (RL) & Inverse Reinforcement Learning (IRL)

Imitation Learning Problem: Apprenticeship Learning via IRL

Question

Can we generalize modern IRL algorithms and improve them upon the rich foundation of optimization studies?

Motivation

Mirror Descent (MD)¹

For sequences $\{w_t\}_{t=1}^T$, $\{F_t\}_{t=1}^T$, and a convex function Ω :

$$\nabla \Omega(w_{t+1}) = \nabla \Omega(w_t) - \eta_t \nabla F_t(w_t)$$

 $\nabla\Omega$ links the parametric space of $w_t \in \mathcal{W}$ to the dual space.

Adversarial Imitation Learning (AIL)²

- · AIL tries to solve an optimization problem "directly."
- AIL does not analyze the convergence with unreliable trajectories in real-world problems.
- Through the lens of geometries, AIL does not ensure unbiased progression of its cost.

¹Nemirovsky & Yudin (1979). Complexity of Problems and Efficiency of Optimization Methods

²Ho & Ermon (2016). Generative Adversarial Imitation Learning. In NeurIPS

Imitation learning in regularized MDPs

Let the cost be represented with the **Bregman divergence**³

With the given action space A, it is defiend as

$$D_{\Omega}(\pi^{s} \| \, \hat{\pi}^{s}) \coloneqq \Omega(\pi^{s}) - \Omega(\hat{\pi}^{s}) - \left\langle \nabla \Omega(\hat{\pi}^{s}), \, \pi^{s} - \hat{\pi}^{s} \right\rangle_{\!\!\!A},$$

where π^s and $\hat{\pi}$ denote arbitrary policies for a given state s.

* Many of the AIL models can be understood with Bregman divergences⁴.

Definition 1. (Regularized reward operators)

Define the regularized reward operator Ψ_{Ω} as

$$\psi_{\pi}(s, a) := \Omega'(s, a; \pi) - \langle \pi^s, \nabla \Omega(\pi^s) \rangle_{A} + \Omega(\pi^s),$$

for
$$\Omega'(s,\cdot;\pi) \coloneqq \nabla \Omega(\pi^s) = \left[\nabla_p \Omega(p)\right]_{p=\pi(\cdot|s)}$$
.

 \Rightarrow RL of π with reward function $\psi_{\hat{\pi}}$ is equivalent to minimizing $D_{\Omega}(\pi^s || \hat{\pi}^s)$.

³Bregman (1969). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.

⁴Jeon et al. (2021). Regularized Inverse Reinforcement Learning. In ICLR.

1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$).

- 1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$).
- 2. Update rewards using MD update rules (MD-IRL).

- 1. Policy Space \triangleright Reward Space ($\psi_t \in \Psi_{\Omega}(\Pi)$).
- 2. Update rewards using MD update rules (MD-IRL).
- 3. Reward Space \triangleright Policy Space ($\nabla \Omega^*$, typically by RL).

MD update rules

The proximal form of the MD update is alternatively written as⁵

$$\underset{w \in \mathcal{W}}{\operatorname{minimize}} \left\langle \nabla F_t(w_t), \ w - w_t \right\rangle_{\mathcal{W}} + \alpha_t D_{\Omega}(w \| w_t),$$

where $\alpha_t := 1/\eta_t$ denotes an inverse of the current step size η_t .

We hypothesize on existence of a random process $\{\bar{\pi}_{E,t}\}_{t=1}^{\infty}$ where each estimation $\bar{\pi}_{E,t}$ resides in a closed, convex neighborhood of π_E , generated by an arbitrary estimation algorithm.

Then, the cost is $D_{\Omega}(\pi_t^s || \bar{\pi}_{E,t}^s)$, thus update are derived by solving the problem:

$$\begin{aligned} & \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \underbrace{\left\langle \nabla D_{\Omega} \left(\boldsymbol{\pi}_{t}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right), \, \boldsymbol{\pi}^{s} - \boldsymbol{\pi}_{t}^{s} \right\rangle_{\!\!\!A} + \alpha_{t} \, D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \, \boldsymbol{\pi}_{t}^{s} \right) \right. \\ & \iff \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \, D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right) - D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right) + \alpha_{t} D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right) \right. \\ & \iff \underset{\boldsymbol{\pi}^{s} \in \Pi^{s}}{\operatorname{minimize}} \, \eta_{t} \underbrace{D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\bar{\pi}}_{E,t}^{s} \right) + \left(1 - \eta_{t}\right) \underbrace{D_{\Omega} \left(\boldsymbol{\pi}^{s} \left\| \boldsymbol{\pi}_{t}^{s} \right)}_{\text{learning agent}} \quad \forall s \in \mathcal{S}, \end{aligned}$$

where the gradient of D_{Ω} is taken with respect to its first argument π_t^s .

⁵Beck et al. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization.

Online mirror descent on imitation learning

Illustrations of an MD-IRL process.

$$\underset{\pi^{s} \in \Pi^{s}}{\operatorname{minimize}} \ \eta_{t} \underbrace{D_{\Omega} \big(\pi^{s} \big\| \bar{\pi}^{s}_{E,t} \big)}_{\text{estimated expert}} + (1 - \eta_{t}) \underbrace{D_{\Omega} \big(\pi^{s} \big\| \pi^{s}_{t} \big)}_{\text{learning agent}}$$

Online mirror descent on imitation learning agents

Examples of MD on Gaussian policy distributions.

Define a temporal cost function at the time step t as

$$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$

Theorem 1 (Stepsize).

- ... $\lim_{T\to\infty} \mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = 0$ if and only if a step size condition is satisfied.
- 1. If $\lim_{t\to\infty} \eta_t = 0$, then $T \in \mathbb{N}$, n < T, and c > 0 exist s.t. $\mathbb{E}_{\tau_{1:T}} \left[f_T(\pi_T, \tau_T) \right] \ge \frac{c}{T-n}$.
- 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = \mathcal{O}(1/T)$.

Define a temporal cost function at the time step t as

$$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$

Theorem 1 (Stepsize).

 $\dots \lim_{T \to \infty} \mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot | s_i) \Big\| \pi_T(\cdot | s_i) \Big) \Big] = 0$ if and only if a step size condition is satisfied.

- 1. If $\lim_{t\to\infty}\eta_t=0$, then $T\in\mathbb{N}$, n< T, and c>0 exist s.t. $\mathbb{E}_{\tau_{1:T}}\big[f_T(\pi_T,\tau_T)\big]\geq \frac{c}{T-n}$.
- 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_{1:T}} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \Big\| \pi_T(\cdot|s_i) \Big) \Big] = \mathcal{O}(1/T)$.

Theorem 2 (Optimal cases).

Assume $\pi_1 \neq \pi_E$ and $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] = 0$. Then, $\mathbb{E}\big[f(\pi_t, \tau_t)\big] = 0$ if and only if $\sum_{t=1}^\infty \eta_t = \infty$. If $\eta_t \equiv \eta_1$, then there exist $c_1, c_2 \in (0, 1)$ such that $c_1^{T-1} \cdot A_1 \leq A_T \leq c_2^{T-1} \cdot A_1$, for $A_t = \sup_{s \in \mathcal{S}} \mathbb{E}_{\tau_{1:t}} \Big[D_\Omega(\pi_E^s \| \pi_t^s)\Big]$.

Define a temporal cost function at the time step t as

$$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$

Theorem 1 (Stepsize).

... $\lim_{T\to\infty} \mathbb{E}_{\tau_1:T} \Big[\sum_{i=0}^{\infty} D_{\Omega} \Big(\pi_*(\cdot|s_i) \big| \big| \pi_T(\cdot|s_i) \Big) \Big] = 0$ if and only if a step size

- condition is satisfied.
- 1. If $\lim_{t\to\infty} \eta_t = 0$, then $T \in \mathbb{N}$, n < T, and c > 0 exist s.t. $\mathbb{E}_{\tau_{1:T}} \left[f_T(\pi_T, \tau_T) \right] \ge \frac{c}{T-r}$. 2. If $\{\eta_t\}_{t\in\mathbb{R}^+}$ is $\eta_t = \frac{4}{t+1}$, then $\mathbb{E}_{\tau_1,\tau}\left[\sum_{i=0}^{\infty} D_{\Omega}\left(\pi_*(\cdot|s_i) \middle\| \pi_T(\cdot|s_i)\right)\right] = \mathcal{O}(1/T)$.

Theorem 2 (Optimal cases).

Assume $\pi_1 \neq \pi_E$ and $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] = 0$. Then, $\mathbb{E}[f(\pi_t, \tau_t)] = 0$ if and only if $\sum_{t=1}^{\infty} \eta_t = \infty$. If $\eta_t \equiv \eta_1$, then there exist $c_1, c_2 \in (0, 1)$ such that $c_1^{T-1} \cdot A_1 \leq A_T \leq c_2^{T-1} \cdot A_1$, for $A_t = \sup_{s \in S} \mathbb{E}_{\tau_{1:t}} [D_{\Omega}(\pi_E^s || \pi_t^s)]$.

Proposition 1 (General cases).

Assume that $\pi_E \notin \Pi$, hence $\inf_{\pi \in \Pi} \mathbb{E}[f(\pi, \tau_t)] > 0$. If the step sizes satisfies **the** proposed step size conditions, then $\lim_{t\to\infty}\sum_{i=0}^{\infty}\gamma^i D_{\Omega}(\pi_*(\cdot|s_i)||\pi_t(\cdot|s_i))$ converges to 0 almost surely.

Define a temporal cost function at the time step t as

$$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$

Step size considerations

Two conditions of $\{\eta_t\}_{t=1}^{\infty}$ to guarantee convergence.

• Convergent sequence & divergent series:

$$\lim_{t \to \infty} \eta_t = 0$$
 and $\sum_{t=1}^{\infty} \eta_t = \infty$.

Convergent series of squared terms:

$$\sum_{t=1}^{\infty} \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$

Define a temporal cost function at the time step t as

$$f(\pi_t, \tau_t) \coloneqq \sum_{i=0}^{\infty} \gamma^i D_{\Omega}(\pi_t(\cdot \mid s_i^{(t)}) \| \bar{\pi}_{E,t}(\cdot \mid s_i^{(t)})),$$

Step size considerations

Two conditions of $\{\eta_t\}_{t=1}^{\infty}$ to guarantee convergence.

Convergent sequence & divergent series:

$$\lim_{t\to\infty}\eta_t=0$$
 and $\sum_{t=1}^\infty\eta_t=\infty.$

Convergent series of squared terms:

$$\sum_{t=1}^{\infty} \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$

A regret bound

In the optimal case of $\inf_{\pi\in\Pi}\mathbb{E}[f(\pi,\tau_t)]=0$, the regret is bounded to $\mathcal{O}(1/T)$. When $\inf_{\pi\in\Pi}\mathbb{E}[f(\pi,\tau_t)]>0$ when the step size satisfy conditions above. Thus, the regret is bounded to $\mathcal{O}(1/T)$ even for the general case.

Algorithm: MD-IRL on an adversarial framework

Dual discriminators: neural network parameters θ , ϕ , and ν are presented representing agent policy, reward, and expert policy functions.

- Matching overall state densities $D_{\xi}(s) = \sigma(d_{\xi}(s))$.
- Imitating specific behavior $D_{\nu}(s,a;\theta,\xi) = \sigma \left(\log \left\{\pi_{\nu}(a|s) \big/ \pi_{\theta}(a|s)\right\} + d_{\xi}(s)\right).$

Define the objective of ϕ as direct interpretation of the update rule:

$$\mathcal{L}_{\psi_{\phi}} = \mathbb{E}_{s \sim \bar{\tau}_t} \Big[\eta_t D_{\Omega} \big(\pi_{\phi}(\cdot \mid s) \big\| \pi_{\nu}(\cdot \mid s) \big) + (1 - \eta_t) D_{\Omega} \big(\pi_{\phi}(\cdot \mid s) \big\| \pi_{\theta}(\cdot \mid s) \big) \Big],$$

with adaptively adjusted step size coefficient η_t and a trajectory $\bar{\tau}_t$.

Define Mirror Descent Adversarial Inverse Reinforcement Learning (MD-AIRL):

$$\psi_{\phi}^{\lambda}(s, a) = \lambda \, \psi_{\phi}(s, a) + d_{\xi}(s), \qquad \lambda \in \mathbb{R}^{+}$$

Train RL policy π_{θ} with ψ_{ϕ}^{λ} using the RAC algorithm⁶

⁶ Yang et al. (2019). A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning. In NeurIPS.

Experimental results: discrete action problems

	$ \mathcal{A} =10^2$		$ A = 10^3$		$ \mathcal{A} =10^4$	
Method	RAIRL	MD-AIRL	RAIRL	MD-AIRL	RAIRL	MD-AIRL
Shannon	2.55 ± 1.59	$\textbf{2.28} \pm \textbf{1.20}$	140.3 ± 87.5	125.3 ± 61	-	-
Tsallis	0.21 ± 0.13	0.11 ± 0.04	0.55 ± 0.13	$\boldsymbol{0.24 \pm 0.03}$	4.95 ± 2.3	4.21 ± 0.2
exp	0.27 ± 0.17	0.13 ± 0.06	0.55 ± 0.12	0.23 ± 0.03	5.06 ± 2.4	$\boldsymbol{4.97 \pm 0.7}$
cos	0.05 ± 0.04	$\boldsymbol{0.02 \pm 0.01}$	0.03 ± 0.02	0.01 ± 0.01	0.21 ± 0.6	0.05 ± 0.1
sin	0.34 ± 0.25	0.12 ± 0.04	3.82 ± 3.46	$\boldsymbol{1.07 \pm 0.75}$	8.12 ± 3.8	$\textbf{7.59} \pm \textbf{1.0}$

Experimental results: continuous action problems

Method		$\varepsilon = 0.01$	$\varepsilon = 0.5$	
Hopper	RAIRL (Shannon) MD-AIRL (Shannon)	$\begin{matrix} 3636.03 \pm 391.09 \\ \textbf{3669.25} \pm \textbf{177.78} \end{matrix}$	$\begin{matrix} 3573.74 \pm 508.14 \\ \textbf{3653.31} \pm \textbf{267.87} \end{matrix}$	
	RAIRL (Tsallis) MD-AIRL (Tsallis)	3671.12 ± 322.32 $\mathbf{3730.14 \pm 63.09}$	3576.17 ± 515.75 3701.24 ± 205.68	
Walker2d	RAIRL (Shannon) MD-AIRL (Shannon)	2856.56 ± 939.9 $\mathbf{3386.38 \pm 953.59}$	2451.00 ± 1392.6 3252.65 ± 1395.7	
	RAIRL (Tsallis) MD-AIRL (Tsallis)	2731.84 ± 1058.7 3624.00 ± 992.63	2435.10 ± 1555.2 3093.54 ± 963.96	

Method		$\varepsilon = 0.01$	$\varepsilon = 0.5$	
HalfCheetah	RAIRL (Shannon) MD-AIRL (Shannon)	4354.15 ± 63.83 4373.17 ± 68.12	4216.99 ± 661.17 4337.18 ± 106.40	
	RAIRL (Tsallis) MD-AIRL (Tsallis)	4364.13 ± 68.09 4388.87 ± 73.19	4216.67 ± 248.08 4247.44 ± 266.73	
Ant	RAIRL (Shannon) MD-AIRL (Shannon)	4493.74 ± 383.04 4658.29 ± 201.37	3777.78 ± 505.78 $\mathbf{4284.38 \pm 329.79}$	
	RAIRL (Tsallis) MD-AIRL (Tsallis)	4359.62 ± 168.46 4705.25 ± 130.53	3660.22 ± 508.54 $\mathbf{4127.37 \pm 457.25}$	

Robust Imitation via Mirror Descent Inverse Reinforcement Learning

arXiv: https://arxiv.org/abs/2210.11201
BI lab: https://bi.snu.ac.kr
Dong-Sig Han: https://dshan4585.github.io
{dshan, hskim, hdlee, jhryu, btzhang}@bi.snu.ac.kr

