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Problem setting

Motivating example: principal component analysis (PCA).
- Given samples X1,..., X, € R?, reduce dimension to r < d.

- Solution: top-r eigenspace of empirical covariance matrix:

1 n
Yn = - ZXjX]T =VAVT + VAL V], Ve o(d,r).
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Challenges and desiderata:
1. What if data are distributed? (communication-efficiency)

2. What if some machines are compromised? (robustness)




Problem setting

General setting and assumptions:
Unknown symmetric matrix A € R¥*? with decomposition
A=VAV 4+ VA V], VeOo(d,r).
Eigengap: we have 0, := Ar(A) — Ary1(A4) > 0.

Local errors: machine i observes symmetric A € R¥*? such that

HA(i) _ AHz < %T, t=1,...,m, (m := number of machines.)

Quality of approximation measured in {2-subspace distance:

disto(V,U) := (1 = VV)U[, = [|(1 =UUT)V]],-



Challenge: averaging local solutions with symmetries

Problem (for r = 1): v(¥) only defined up to sign.
M aligned with v T2
M aligned with —v

X

Question: can we fix the sign ambiguity?
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Challenge: averaging local solutions with symmetries

Problem (for r = 1): v(¥) only defined up to sign.
M aligned with v T2
M aligned with —v
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Proposed method

Algorithm (without node failures): average aligned eigenvectors of AD,

Algorithm Procrustes Fixing

Input: local eigenvector matrices V¥ € O(d,r), i=1,...,m,
fori=1,...,m do ,
Zi = argminer(r) HV(Z)U —v® HF > V) acts as “reference”

v .= V(i)Zi > Procrustes alignment
1 (i
return L "7 VO

- Without corruptions, achieves approximation error *:

. i m o <l m ||A(i)*A||2 2 1 i m ©
dlstz,(m;v 7V>~mz(a #5240 -4
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- Key issue: not robust to nodes that may respond adversarially.

1C., Benson & Damle, 2021



Node failures
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Corruption model: unknown index set Zyag C [m] such that:
|Zbad| < am, for a € (0,1/2).
All nodes i € Tp.q return arbitrary, but structurally valid Q¥ o(d,r).

Sources of corruption:
- Silent / soft errors (e.g., insufficient eigensolver tolerance);
- Outliers / corrupted data (e.g., corrupted data source in some machines);

- Adversarial responses.



A robust algorithm

Strategy: “robustify” Procrustes-fixing algorithm.

Challenge I: reference solution could be chosen among outliers.
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A robust algorithm
Strategy: “robustify” Procrustes-fixing algorithm.
Challenge II: Even with “good” reference, we could average over outliers.
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A robust algorithm

Strategy: “robustify” Procrustes-fixing algorithm.

Algorithm Robust Procrustes fixing

1: Input: responses {‘7(2') | i € [m]}, corruption fraction c.
2: Vieg 1= RobustReferenceEstimator({v(i)}:.11)

3: {‘7“)}7;1 = Procrus‘cesFixing({‘A/(")}:n:'1 s Vief)

4

Vo= RobustMeanEs‘cimation({f/(i)}:n:1 , Q).

Key differences:
1. Instead of picking V(1) as reference, choose it robustly.

2. Instead of averaging Procrustes-fixed responses, compute their robust mean.



Experiment

Setup: distributed PCA with |am| responses replaced by a Vi, € O(d, 7).
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X “Baseline” solution almost orthogonal to V as a — 1/2.

v Robust solution: natural breakdown point at v = 1/2.



Thank youl!

Full paper: arXiv:2206.00127
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