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Introduction
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One training image ~100 training image

It 1s difficult to synthesize photo-realistic and highly diverse images
when training a generator from the scratch with very limited data.
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Dom. A

Transfer a pre-trained generator to a new domain so that
inheriting its ability to producing highly diverse images.
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Global-level adaption loss Ly,na and attentive style loss L ., encourage Gg to faithfully acquire
both global and local representative domain-specific characteristics.
Selective cross-domain consistency loss L. selects and retains domain-sharing attributes.



Local-level adaption (attentive style loss)

Each part of adapted image attentively captures

1ts corresponding style in target image
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Then, we compute the attentive style loss as: px : i
Adapted Image ' \mage Encoder (ViT) E; i
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Selective cross-domain consistency loss

The key idea 1s to identify and retain domain-sharing
attributes between domain A and B.

Lsce = ||mask(Aw, a) - (wp —w4)||1
To 1dentify them, we use two queues to memory

pairs of latent codes from domain A and B.
Dynamically choose the least-change channels.
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Qualitative results (Inter-category)
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More qualitative results
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More qualitative results
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Real Image Editing
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Editing a real image in domain B



Extension

“A painting
in the style of & =
Edvard Munch” 8\

“A sketch with
black pencils”

Extension to zero-shot generative domain adaption



