

Egocentric Video-Language Pretraining

Presentor: Kevin Qinghong Lin Show Lab @ NUS, U of Bristol, IVUL @ KAUST, Tencent

Kevin Qinghong Lin, Alex Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Zhongcong Xu, Difei Gao, Rongcheng Tu, Weijie Kong Wenzhe Zhao, Chengfei Cai, Hongfa Wang, Bernard Ghanem, Dima Damen, Wei Liu, and Mike Zheng Shou. Egocentric Video-Langugae Pretraining. arXiv preprint arXiv:2206.01670, 2022.

Background

• Existing VLP models are pretrained on Large-scale 3rd-person view datasets

HowTo100M (ICCV'19)

Easy to get, Noisy, Edited...

by Viaggio I

popular food market showing the traditional foods from the country.

by Joi Ito

the trail climbs steadily uphill most of the way.

adily the stars in the night sky.

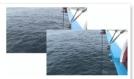
musical artist performs on stage during festival.

"Lonely beautiful woman sitting on the tent looking outside. wind on the hair and camping on the beach near the colors of water and shore. freedom and alternative tiny house for traveler lady drinking"

"Billiards, concentrated young woman playing in club"

talkie, responding emergency call,

crime prevention"



"Get anchor for departure safari dive boat scuba diving maldives"

WebVid 2.5M (ICCV'21)

demo video samples from EPIC-Kitchens (PAMI'20)

Background

- In contrast, humans perceive the world in an **egocentric** way.
- Egocentric videos are important in many real-world applications

Egocentric videos

Robot

Motivation

• Would VLP model pretrained on <u>3rd person view videos</u> work well on <u>egocentric videos</u>?

• If not, how can we create an **Egocentric VLP** model?

Motivation

• Previous **Egocentric datasets** are of **small data scale and domain-specific**, making video-language pre-training impossible.

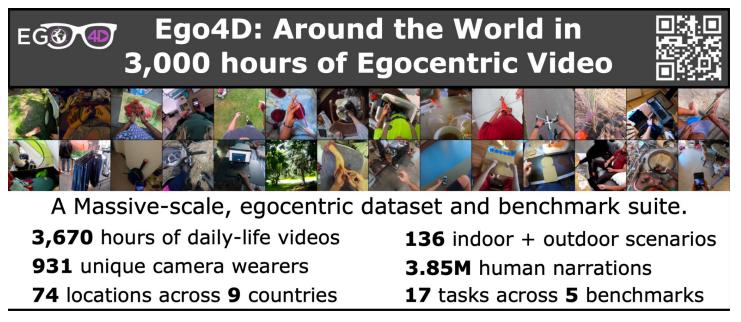
Dataset	Ego?	Domain	Dur (hrs)	# Clips	# Texts	Example
MSR-VTT [17]	×	diverse	40	10 K	200K	n's COOL WALL C. GOOL SEITE
YouCook2 [18]	×	cooking	176	14K	14K	111
ActivityNet Captions [7]	×	action	849	100K	$100\mathbf{K}$	-
WebVid-2M [11]	×	diverse	13K	2.5M	2.5M	
HowTo100M [10]	×	instructional	134K	136 M	136 M	3rd-person view
Charades-Ego [19]	\checkmark	home	34	30K	30K	
UT-Ego [20]	\checkmark	diverse	37	11 K	11K	
Disneyworld [21]	\checkmark	disneyland	42	15K	15K	
EPIC-KITCHENS-100 [22]	\checkmark	kitchen	100	90K	90K	
EgoClip	\checkmark	diverse	2.9K	3.8M	3.8M	1st-person view

Table 1: Comparison of our proposed EgoClip pretraining dataset against the mainstream videolanguage datasets (top) and egocentric datasets (bottom).

Egocentric videos are expensive!

Ego4D Recap

• Ego4D unlocks the Egocentric VLP!



https://ego4d-data.org/

Ego4D for VL Pre-training?

• Research Q1: How to create pre-training **dataset**?

• Research Q2: How to design pre-training **model**?

• Research Q3: What benchmark we shall evaluate on?

TL;DR

• Create a Large-scale VL pretraining set of **3.8M video-text pairs** from Ego4D: EgoClip

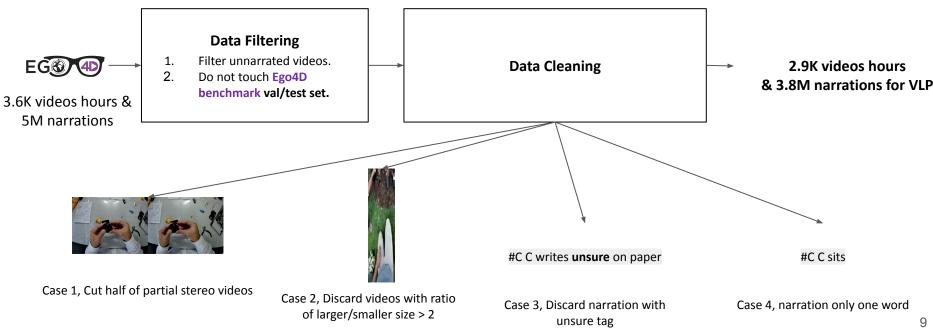
• Propose an Egocentric-friendly video-text pretraining objective: **EgoNCE**

• Construct a development set for evaluating Egocentric VL Pre-training: EgoMCQ

- Significant gains on **5 egocentric benchmarks** across **3 datasets**:
 - [Ego4D Challenges] **Object State Change Classification**: Acc from 68.7% to 73.9%. (+5.2%, **1st Place**)
 - [EPIC-KITCHENS Challenges] Multi-Instance Retrieval: nDCG (avg) from 53.5% to 59.4%. (+5.9%, 1st Place)
 - [Ego4D Challenges] Natural Language Query: R@1 (IoU=0.3) from 5.45% to 10.84%. (+5.4%, 2nd Place)
 - [Ego4D Challenges] Moment Query: R@1 (IoU=0.3) from 33.45% to 40.43%. (+7.0%)
 - [Charades-Ego] Action Recognition: MAP from 30.1% to 32.1%. (+2.0%)

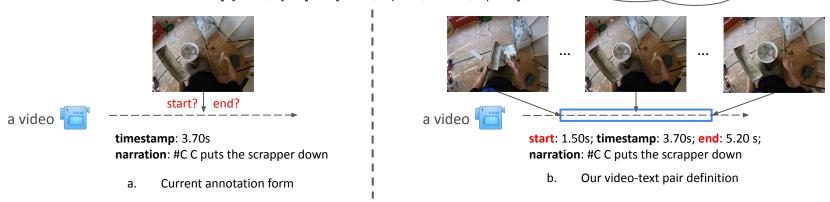
Q1, Egocentric Video-Language Pre-training set 👉 EgoClip

Issue of undesired data source and data noise 1



Q1, Egocentric Video-Language Pre-training set 👉 EgoClip

- 2. Issue of no direct <clip, text> pair
 - a. Issue of no direct clip: Ego4D narration is annotated for a moment rather than for an interval
 - **b.** Our approach: a contextual variable-length clip pairing strategy
 - Measure the clip length β_i according to each video $\circ \circ \circ \circ$ Watching TV (352.9 sec) v.s. $[t_i^{start}, t_i^{end}] = [t_i - \beta_i/2\alpha, t_i + \beta_i/2\alpha],$



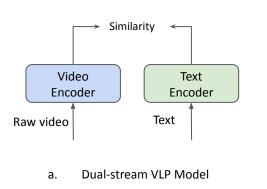
Finally, we create **3.8M** clip-text dataset for video-language pretraining, which we named **EgoClip**.

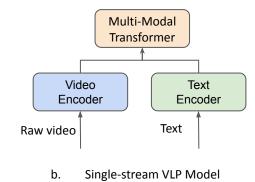
Bain M, Nagrani A, Varol G, et al. Frozen in time: A joint video and image encoder for end-to-end retrieval[C] ICCV. 2021: 1728-1738. Lei J, Li L, Zhou L, et al. Less is more: Clipbert for video-and-language learning via sparse sampling[C] CVPR. 2021: 7331-7341.

Q2, Egocentric VLP model

- Design of Pretraining Model Framework?
 - What we hope:
 - 1. Raw videos as input for end-to-end training
 - 2. Efficient for video-text retrieval fundamental task of video-language understanding
 - 3. Support video-only tasks e.g., action recognition

Thus, we go with **Dual-stream transformer** architecture like Frozen (Bain M, ICCV'21) instead of Single-stream, e.g. ClipBert (Lei J, CVPR'21)





Currently following Frozen, we use **TimeSformer** for video-encoder and **DistillBERT** for text-encoder.

Q2, Egocentric Pretraining Objective 👉 EgoNCE

- Design of Pretraining objectives?
 - Universal Video-text contrastive learning: InfoNCE

$$\mathcal{L}_{ ext{v2t}} = rac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log rac{\exp(\mathbf{v}_i^T \mathbf{t}_i / au)}{\sum_{j \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{t}_j / au)},$$

- InfoNCE regards the sample itself as supervision and others as negatives, which cannot tackle two challenges in Egocentric pretraining:
 - 1. The same action often occurs in different scenarios, e.g.,

v.s.

watching the phone when lying in room

watching the phone when walking outdoors

2. Different actions appearing in the same scenario tend to have minor visual differences, e.g.,

v.s.

moving the mouse when working at a desk

typing on the keyboard when working at a desk

Q2, Egocentric Pretraining Objective 👉 EgoNCE

- Design of Pretraining objectives?
 - Universal Video-text contrastive learning: InfoNCE

$$\mathcal{L}_{v2t} = rac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log rac{\exp(\mathbf{v}_i^T \mathbf{t}_i / au)}{\sum_{j \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{t}_j / au)},$$

- InfoNCE regards the sample itself as supervision and others as negatives, which cannot tackle two unique challenges in Egocentric pretraining:
 - 1. The same action often occurs in different scenarios
 - 2. Different actions appearing in the same scenario tend to have minor visual differences
- Novel method **EgoNCE** to leverage positive and negative samples in **egocentric domain**
 - 1. **Positive Sampling** f based on action = <verb + noun>
 - 2. Negative Sampling from based on temporally adjacent in same video

$$\mathcal{L}_{\mathrm{v2t}}^{\mathrm{ego}} = rac{1}{|\widetilde{\mathcal{B}}|} \sum_{i \in \widetilde{\mathcal{B}}} \log rac{\sum_{k \in \mathcal{P}_i} \exp(\mathbf{v}_i^T \mathbf{t}_k / au)}{\sum_{j \in \mathcal{B}} \left(\exp(\mathbf{v}_i^T \mathbf{t}_j / au) + \exp(\mathbf{v}_i^T \mathbf{t}_{j'} / au)
ight)}$$

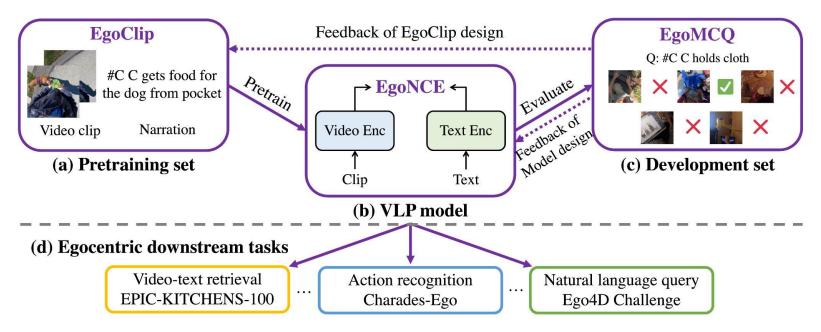
Q3, What benchmark we shall evaluate on?

- Before we transfer our model to other downstream benchmarks...
- We need a dev benchmark that is well aligned with
 - Our pretraining data domain i.e. in-the-wild of Ego4D
 - Our pretraining task i.e. video-text alignment
- This dev benchmark serves as a intermediate step for tuning our pretraining, avoiding the issues may encounter in transfering

Benchmark	Domain	Task
EPIC-KITCHENs	Cooking 🗙	video-text retrieval 🗸
Charades-Ego	Indoor 🗙	action recognition 🗙
Ego4D benchmarks	In-the-wild 🔽	moment localization, forecasting 🗙
What we'd like to have	In-the-wild 🔽	video-text alignment V

Q3, What benchmark we shall evaluate on?

• Data flow of EgoVLP



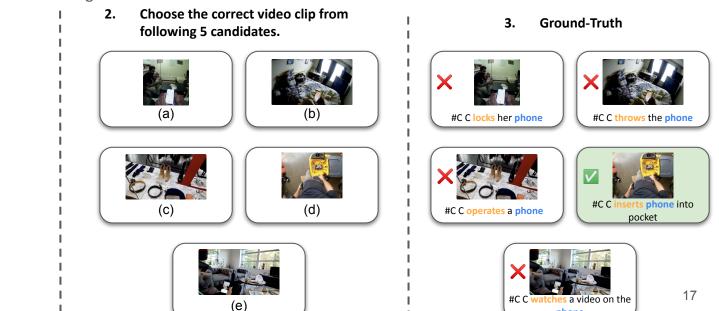
Q3, A Benchmark for Egocentric VLP Development 👉 EgoMCQ

- Roadblock 1: video-text retrieval is not suitable
 - Issue of "one-to-many"
 - Often multiple clips could have similar narration, hard to evaluate for text-video retrieval

- Solutions:
 - **nDCG** is designed to tackle this issue (Damen et al. IJCV'21.), but requires additional annotations
 - Automatic de-dup methods (e.g. based on Bert text feature similarity thresholding), works not well
 - Final strategy:
 - **Repetitions are still allowed** in the pre-training dataset to **ensure diversity**.
 - **Do de-dup** when preparing the dev benchmark for evaluation.

Q3, A Benchmark for Egocentric VLP Development 👉 EgoMCQ

- Our approach: Multi-Choices Question
 - "one-to-many" issue is alleviated **among fewer options (i.e. 5).**
 - A specific form of video-text retrieval and shares the same purpose.
- We propose **EgoMCQ** what is EgoMCQ?



phone

1. Given a text query: #C C **inserts phone** into pocket

Q3, A Benchmark for Egocentric VLP Development 👉 EgoMCQ

- Roadblock 2: How to group question and choices?
- Our strategy: De-dup within five options (consider synonyms) and propose to evaluate on 2 different modes
 - Inter-video
 - Options from different videos and vary widely in content.
 - Intra-video
 - Grouping five continuous clips together, the harder mode.

EgoMCQ	Inter-video				Intra-video					
Text query#C C carries paint bucket down the ladder#C C carries paint				#C C carries paint bucket down the ladder					down the la	ndder
Select the correct video clip from 5 candidates	(a) (b) (c) (d) (e)			(a)	(b)	(c)	(d)	(e)		
Answer with GT	#C C places the camping seat down		#C C picks the silicone sealant	#C C takes a stone	#C C cuts the green bean into pieces	#C C holds paintbrush with both hands	#C C turns paintbrush in his left hand		#C C drops paintbrush on paint bucket	#C C carries paint bucket down the ladder

Ego4D for VL Pre-training?

• Research Q1: How to create pre-training **dataset**? **FegoClip**

• Research Q2: How to design pre-training **model**? *f* **EgoNCE**

• Research Q3: What benchmark we shall evaluate on? *frequence* EgoMCQ

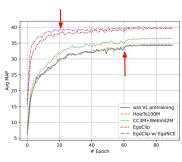
• How well EgoVLP transfer to egocentric downstream tasks?

• How's the designs of EgoClip, EgoNCE, and EgoMCQ?

- Transfer EgoVLP to EPIC-KITCHENS-100
 - Task of Multi-Instance Retrieval: A type of Text-video retrieval
 - Metric **mDCG** use label to calculate semantic relevance and is more comprehensive than **mAP**.

Methods	Vis Enc Input	# Frames	Vis-text PT	1	nAP (%))	n	DCG (%)
Methods	vis Enc input	# r rames	vis-text P1	$V \rightarrow T$	$T {\rightarrow} V$	Avg	$V{\rightarrow}T$	$T {\rightarrow} V$	Avg
Random	-	-	-	5.7	5.6	5.7	10.8	10.9	10.9.
MI-MM	S3D [39]	32	HowTo100M	34.8	23.6	29.2	47.1	42.4	44.7
MME [40]	TBN † [15]	25	-	43.0	34.0	38.5	50.1	46.9	48.5
JPoSE [40]	TBN † [15]	25	-	49.9	38.1	44.0	55.5	51.6	53.5
Frozen	Raw Videos	4	-	38.8	29.7	34.2	50.5	48.3	49.4
Frozen	Raw Videos	4	HowTo100M	39.2	30.1	34.7	50.7	48.7	49.7
Frozen	Raw Videos	4	CC3M+WebVid2M	41.2	31.6	36.4	52.7	50.2	51.4
Frozen	Raw Videos	4	EgoClip	44.5	34.7	39.6	55.7	52.9	54.3
Frozen+EgoNCE	Raw Videos	4	EgoClip	45.1	35.3	40.2	56.2	53.5	54.8
Frozen	Raw Videos	16	CC3M+WebVid2M	45.8	36.0	40.9	57.2	54.3	55.8
Frozen+EgoNCE	Raw Videos	16	EgoClip	49.9	40.5	45.0	60.9	57.9	59.4
Frozen	Raw Videos	4	HowTo100M	6.8	6.3	6.5	11.6	12.8	12.2
Frozen	Raw Videos	4	CC3M+WebVid2M	8.6	7.4	8.0	14.5	14.6	14.5
Frozen	Raw Videos	4	EgoClip	<u>17.9</u>	13.1	15.5	23.0	21.2	22.1
Frozen+EgoNCE	Raw Videos	4	EgoClip	19.4	13.9	16.6	24.1	22.0	$\overline{23.1}$

Same model, different pretraining datasets: EgoClip outperforms 3rd person view dataset HowTo100M and WebVid



(a) mAP with training epoch

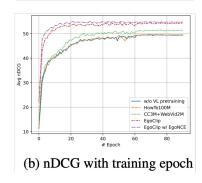


Table 4: Performance of the EPIC-KITCHENS-100 Multi-Instance Retrieval. Note that TBN † feature [15] are a combination of three modalities: RGB, Flow and Audio. Conversely, our approach only relies on RGB input. The grey highlighted rows correspond to **zero-shot evaluation**.

- Observation
 - 1. In zero-shot settings, EgoVLP boosts Avg mAP and nDCG of CC3M+WebVid2M with 8.6%
 - In <u>fine-tune</u> settings, EgoVLP advances Avg mDCG of JPoSE with 5.9% under fewer frames (<u>16 vs 25</u>) and less inputs modality (<u>RGB+Text</u> vs <u>RGB/Flow/Audio+Text</u>)

EgoClip pretraining convergence faster (20 v.s. 60 epoches)

• Transfer EgoVLP to Ego4D challenge benchmarks

Task 1: Natural Lang		(Text-video Localization)
Task I. Natural Lang	suage Query	

Methods	Video-text Pre-	loU	=0.3	IoU=0.5		
	Vis-text Enc	Vis-text PT	R@1	R@5	R@1	R@5
2D-TAN [24]	SlowFast+BERT	-	5.04	12.89	2.02	5.88
VSLNet [44]	SlowFast+BERT	-	5.45	10.74	3.12	6.63
VSLNet [44]	Frozen	HowTo100M	3.95	8.72	2.01	4.62
VSLNet [44]	Frozen	CC3M+WebVid2M	5.06	10.30	2.71	6.69
VSLNet [44]	Frozen	EgoClip	10.53	17.94	5.96	11.85
VSLNet [44]	Frozen+EgoNCE	EgoClip	10.84	18.84	6.81	13.45

Table 6: Recall for several IoU on the NLQ task's val. set.

Task 2: Object State Change Classification (Action Recognition)

Methods	Vis-Text PT	Acc. (%)
Always Positive	-	48.1
Bi-d LSTM [46]	ImageNet	65.3
I3D ResNet-50 [47]	-	68.7
Frozen	-	70.3
Frozen	HowTo100M	71.7
Frozen	CC3M+WebVid2M	71.5
Frozen	EgoClip	73.4
Frozen+EgoNCE	EgoClip	73.9

Table 8: Accuracy metric on the Object StateChange Classification task's val set.

Task 3: Moment Query (Temporal Action Localization)

Methods	Video Pre-extracted Features		IoU	=0.3	IoU	=0.5	IoU	=0.7	n	nAP (%) @ Io	U
	Vis Enc	Vis-text PT	R@1	R@5	R@1	R@5	R@1	R@5	0.1	0.3	0.5	Avg
VSGN [45]	SlowFast	-	33.45	58.43	25.16	46.18	15.36	25.81	9.10	5.76	3.41	6.03
VSGN [45]	Frozen	HowTo100M	31.40	52.61	22.28	41.29	13.41	23.21	9.83	6.72	3.84	6.72
VSGN [45]	Frozen	CC3M+WebVid2M	32.08	56.40	23.46	43.81	13.73	23.77	9.83	6.40	3.86	6.58
VSGN [45]	Frozen	EgoClip	40.06	63.71	$\underline{29.59}$	48.32	17.41	26.33	15.90	10.54	6.19	10.69
VSGN [45]	Frozen+EgoNCE	EgoClip	40.43	65.67	30.14	51.98	19.06	29.77	16.63	11.45	6.57	11.39

Table 7: Recall and mAP metrics for several IoU on the Moment Query task's val. set.

• Transfer EgoVLP to Charades-Ego

• We prompt video-text knowledge to the task of **Action recognition**

Methods	Vis Enc	# Frames	Vis-Text PT	Train / FT Data	mAP (%)
Actor [41]	ResNet-152	25	-	Charades-Ego (1st + 3rd)	20.0
SSDA [42]	I3D	32	-	Charades-Ego (1st + 3rd)	23.1
I3D [42]	I3D	32	-	Charades-Ego (1st).	25.8
Ego-Exo [43]	SlowFast (Res-101)	32	-	Charades-Ego (1st)	30.1
Frozen	TimeSformer	16	-	Charades-Ego (1st)	28.8
Frozen	TimeSformer	16	HowTo100M	Charades-Ego (1st)	28.3
Frozen	TimeSformer	16	CC3M+WebVid2M	Charades-Ego (1st)	30.9
Frozen	TimeSformer	16	EgoClip	Charades-Ego (1st)	31.2
Frozen+EgoNCE	TimeSformer	16	EgoClip	Charades-Ego (1st)	32.1
Frozen	TimeSformer	16	HowTo100M	-	9.2
Frozen	TimeSformer	16	CC3M+WebVid2M	-	20.9
Frozen	TimeSformer	16	EgoClip	-	23.6
Frozen+EgoNCE	TimeSformer	16	EgoClip	-	25.0

Table 5: Performance of the action recognition on Charades-Ego dataset (First-person test set). The grey highlighted rows correspond to **zero-shot evaluation**.

- Ablation Studies on EgoMCQ
 - EgoClip (Clip creation strategy)

Clip creation strategy	$ \begin{array}{ } \textbf{Clip's length (s)} \\ Avg \pm Std \end{array} $		Acc (%) Intra-video		→V Retrieval [22] nDCG (avg)
(a) $[t_i, t_i + \alpha]$	5.0 ± 0.0	87.66	39.72	19.6	12.3
(b) $[t_i - \alpha/2, t_i + \alpha/2]$	5.0 ± 0.0	89.23	41.68	20.6	13.7
(c) $[t_{i-1}, t_{i+1}]$	10.0 ± 38.2	88.13	40.62	20.6	13.7
(d) $[t_i - \beta_i/2, t_i + \beta_i/2]$	4.9 ± 4.7	89.74	44.82	21.1	14.5
(e) $[t_i - \beta_i/4, t_i + \beta_i/4]$	2.4 ± 2.4	90.23	49.67	21.9	15.3
(f) $[t_i - \beta_i/2\alpha, t_i + \beta_i/2\alpha]$	1.0 ± 0.9	89.36	51.51	22.1	15.5

Under same average length, our **varied-length** (d) outperform fixed-length (b)

Table 2: Results on our development set EgoMCQ and video-text retrieval on EPIC-KITCHENS-100 when using different strategies in the creation of EgoClip, where t_i , α , β_i are defined in Eq. 1. In all experiments, we bold the **best results** and underlined the second best results.

• EgoNCE (positive & negative sampling)

Variants	Accura	ncy (%)
variants	Intra-video	Inter-video
InfoNCE	89.4	51.5
(a) w/ Pos, noun	82.9 (6.5 ↓)	42.3 (9.2 ↓)
(b) w/ Pos, verb	86.9 (2.5 1)	50.5 (1.0 ↓)
(c) w/ Pos, noun & verb	<u>89.7</u> (0.4 ↑)	53.6 (2.1 ↑)
(d) w/ Neg, random	88.3 (1.1 ↓)	49.9 (1.6 ↓)
(e) w/ Neg, within video	<u>89.7</u> (0.3 ↑)	53.0 (1.5 1)
(f) w/ Neg, within 1 min	89.5 (0.2 1)	<u>54.5</u> (3.0 ↑)
(g) w/ Pos & Neg, EgoNCE	90.6 (1.3 ↑)	57.2 (5.7 ↑)

Only noun / verb decrease performance, our **<noun, verb>** brings gains

Negative from same video is help, while **close-in-time** further boost performance

Table 3: Pretraining sampling strategy ablation. We evaluate accuracy performance on our development benchmark EgoMCQ.

Potential directions

• Egocentric-Exocentric Domain adaptation

Pretraining set	EPIC-Kitchens (1st)		MSR-VTT (3rd)		
	nDCG mAP		T2V R@1	V2T R@1	
EgoClip (1st)	23.4	16.5	4.2	4.8	
WebVid (3rd)	14.2	7.8	18.1	15.9	
EgoClip + WebVid (1st+3rd)	22.0 \downarrow	15.0 ↓	17.5 \downarrow	15.3 🗸	

- Egocentric foundation model like human
 - Generation task
 - Other modality e.g., audio

Want to know more?

- Preprint: <u>https://arxiv.org/abs/2206.01670</u>
- Github: <u>https://github.com/showlab/EgoVLP</u>
- Contact: <u>kevin.qh.lin@gmail.com</u> & <u>mike.zheng.shou@gmail.com</u>

Thank you!

Appreciate any questions and comments

