Estimating graphical models for count data with applications to single-cell gene network

Feiyi Xiao, Junjie Tang, Huaying Fang, Ruibin Xi

Speaker : Feiyi Xiao

School of Mathematical Science, Peking University

10/10/2022

Background

Gaussian Graphical model

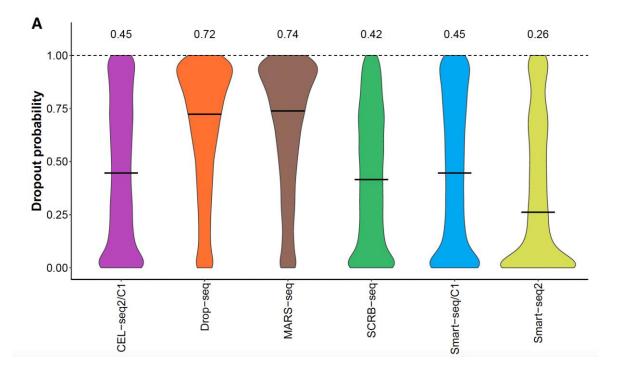
- In Gaussian graphical model $\boldsymbol{x} \sim N_p(0, \boldsymbol{\Sigma})$:
 - Precision matrix: $\Theta = \Sigma^{-1}$.
 - Nonzero elements of Θ correspond to edges in Gaussian graphical model. If $\mathbf{x} \sim N_p(0, \Sigma), \Theta_{ij} = 0$ iff $x_i \perp x_j | \{x_k, k \neq i, j\}$ (Wittaker, 1990).
 - We can impose sparsity on Θ to study the Gaussian graphical model.
- glasso: Yuan and Lin (2006) and Friedman et al. (2007) proposed to estimate Θ by minimizing:

 $-\log \det (\Theta) + \operatorname{tr} (\Theta \widehat{\Sigma}) + \lambda |\Theta|_{1,off}$

Background

Challenges in Analyzing scRNA-seq Data

- High dimensional and large number of cells.
- Essential count data, many methods developed for continuous data would not work well.
- High dropout (ratio of zeros) and increased variation.

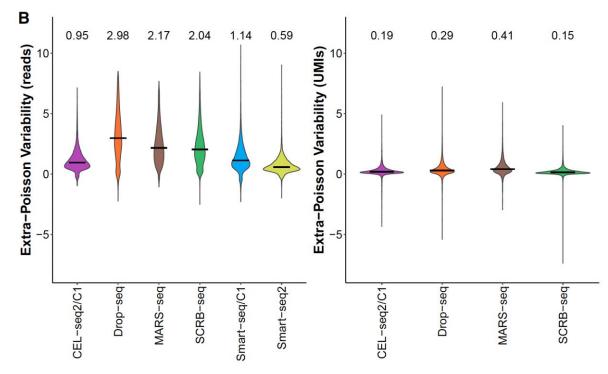


Ziegenhain et al. 2017 Molecular Cell

Background

Challenges in Analyzing scRNA-seq Data

- High dimensional and large number of cells.
- Essential count data, many methods developed for continuous data would not work well.
- High dropout (ratio of zeros) and increased variation.



Ziegenhain et al. 2017 Molecular Cell

Method

Poisson Log-normal (PLN) model

- scRNA-seq data with n cells and p genes.
- Observed expression : $\boldsymbol{Y}_{i} = (Y_{i1}, \dots, Y_{ip})^{T}$.
- Underlying true expressions: $X_i = (X_{i1}, ..., X_{ip})^T$.
- *S_i*: library size.
- Network: precision matrix Θ^* .
- The PLN model for scRNA-seq data:

$$Y_i | X_i \sim \prod_{j=1}^{p} \operatorname{Poisson}(S_i X_{ij})$$
$$\log(X_i) \sim \operatorname{N}(\mu^*, (\Theta^*)^{-1})$$

PLNet Procedure

- Estimate the covariance matrix $\Sigma^* = (\Theta^*)^{-1}$ using maximum marginal likelihood estimator (MMLE).
 - Newton-Raphson algorithm.
 - Initial values: moment estimator $\tilde{\mu}^m$ and $\tilde{\Sigma}^m$.
 - Positive semi-definite projection.
- Plug-in the MMLE $\hat{\Sigma}$ to the lasso penalized D-trace loss (Zhang and Zou (2014)) to estimate Θ^* :

$$\widehat{\Theta} = \operatorname{argmin}_{\Theta \ge 0} \frac{1}{2} \operatorname{tr}(\widehat{\Sigma}\Theta^2) - \operatorname{tr}(\Theta) + \lambda_n ||\Theta||_{1,\text{off}}.$$

• Tuning parameter λ_n selection: approximated Bayesian information criterion (BIC):

$$\left\|\frac{1}{2}\left(\widehat{\Theta}\widehat{\Sigma} + \widehat{\Sigma}\widehat{\Theta}\right) - I_p\right\|_F + \frac{\log(n)}{n} \left\|\widehat{\Theta}\right\|_0$$

Main Theoretical Results

Consistency Theory

Theorem 1 (Rate of convergence and sign consistency)

Under some mild conditions, there exist positive constants A, B, C, such that for some $\eta > 2$, if $n > C_p C$, choosing

 $\lambda_n = 12\gamma^{-1} \left(k_{\Sigma} k_{\Gamma}^2 + k_{\Gamma} \right) C_p^{1/2} n^{-\frac{1}{2}}, \text{ then with probability } 1 - p^{2-\eta},$

$$\left\|\widehat{\Theta} - \Theta\right\|_{\infty} \leq \left(12\gamma^{-1}\left(k_{\Sigma}k_{\Gamma}^{3} + k_{\Gamma}^{2}\right) + 5dk_{\Gamma}^{2}\right)C_{p}^{1/2}n^{-\frac{1}{2}},$$

and $\widehat{\Theta}$ recovers all zeros and nonzeros in Θ , where C_p is defined as $B^{-1}(\eta \log p + \log A)$.

• Largely speaking, for any $\eta > 2$, the sign consistency holds for $n \sim CB^{-1}\eta \log p$, the rate of convergence for $\widehat{\Theta}$ is $O\left(\left[\eta(\log p)/n\right]^{1/2}\right)$ under I_{∞} -norm.

Simulation Settings

- 48 different scenarios:
 - 2 sample size setups (n = 500, 2000).
 - 3 dimension setups (p = 100, 300, 500).
 - 2 dropout levels (low: about 40 percent of the counts are zeros, high: about 60 percent of the counts are zeros).
 - 4 graph structures (Banded Graph, Random Graph, Scale-free Graph, Blocked Graph).
- Competitors:
 - PLNet-MOM (using moment estimator instead of MMLE in PLNet)
 - VPLN
 - glasso

Simulation

AUPR Results

Sample size	n =	2000	n =	2000	n = 2000						
Dimension	p = 100		p =	300	p = 500						
Dropout	Low	High	Low	High	Low	High					
			Bandeo	d graph							
PLNet	0.99 (0.01)	0.96 (0.01)	0.99 (0.01)	0.94 (0.02)	0.98 (0.01)	0.89 (0.08)					
PLNet-MOM	0.97 (0.01)	0.92 (0.01)	0.91 (0.01)	0.83 (0.02)	0.83 (0.02)	0.75 (0.01)					
VPLN	0.95 (0.01)	0.89 (0.03)	0.94 (0.01)	0.79 (0.15)	0.94 (0.01)	0.81 (0.01)					
glasso	0.62 (0.03)	0.04 (0.01)	0.82 (0.01)	0.07 (0.01)	0.85 (0.01)	0.15 (0.02)					
	Randóm graph										
PLNet	0.98 (0.01)	0.88 (0.04)	0.98 (0.03)	0.85 (0.05)	0.99 (0.01)	0.83 (0.04)					
PLNet-MOM	0.94 (0.02)	0.82 (0.06)	0.94 (0.01)	0.77 (0.05)	0.93 (0.01)	0.74 (0.05)					
VPLN	0.78 (0.08)	0.69 (0.07)	0.88 (0.03)	0.67 (0.1)	0.86 (0.11)	0.67 (0.11)					
glasso	0.55 (0.06)	0.18 (0.03)	0.8 (0.03)	0.24 (0.04)	0.84 (0.02)	0.26 (0.04)					
		Scale-free Graph									
PLNet	0.89 (0.17)	0.85 (0.11)	0.97 (0.02)	0.85 (0.03)	0.96 (0.03)	0.83 (0.02)					
PLNet-MOM	0.85 (0.11)	0.81 (0.08)	0.86 (0.01)	0.75 (0.02)	0.83 (0.01)	0.71 (0.01)					
VPLN	0.74 (0.16)	0.67 (0.15)	0.79 (0.04)	0.68 (0.11)	0.8 (0.05)	0.66 (0.13)					
glasso	0.59 (0.14)	0.45 (0.06)	0.78 (0.02)	0.5 (0.03)	0.81 (0.02)	0.53 (0.02)					
		Blocked graph									
PLNet	0.94 (0.02)	0.83 (0.07)	0.97 (0.01)	0.81 (0.08)	0.97 (0.01)	0.77 (0.05)					
PLNet-MOM	0.88 (0.04)	0.75 (0.08)	0.91 (0.02)	0.72 (0.08)	0.89 (0.02)	0.68 (0.05)					
VPLN	0.73 (0.03)	0.66 (0.07)	0.78 (0.04)	0.62 (0.07)	0.8 (0.06)	0.59 (0.11)					
glasso	0.47 (0.05)	0.2 (0.03)	0.7 (0.04)	0.21 (0.04)	0.75 (0.03)	0.21 (0.04)					

Simulation

BIC, Banded graph

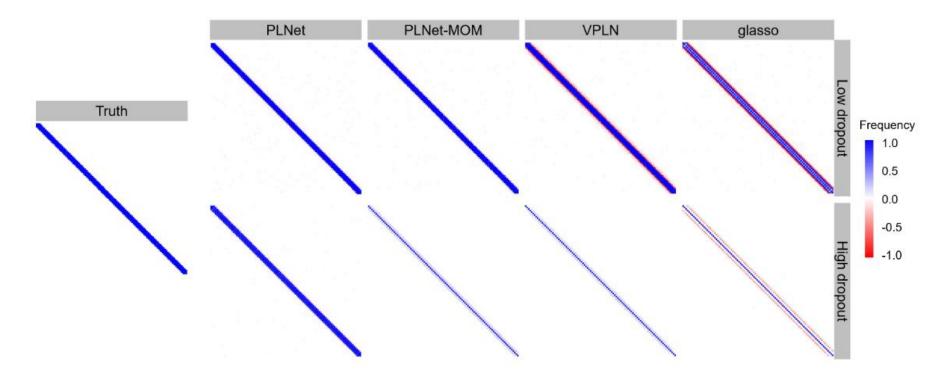


Fig. 1. The mean networks predicted by PLNet, VPLN, glasso and PLNet-MOM for the banded graph with 100 nodes and n = 2000. False edges are colored in red and true edges are in blue. The left panel is the true network matrix for reference.

Application to a scRNA-seq dataset

Peripheral Blood Mononuclear Cells (PBMC) Dataset

- A large scale scRNA-seq dataset with ctrl group and stim group stimulated by interferon β (IFN- β) from Kang et al.(2018).
- The CD14+ monocytes (2147 cells) in stim group to infer gene networks.
- Gene set: Top 200 highly variable genes + additional 26 TFs from the top 500 highly variable genes.
- The silver standard is based on an available regulatory network database obtained from ChIP-seq experiments (the hTFtarget database).

Application to a scRNA-seq dataset

Performance

• PLNet has a higher true discovery rate than VPLN.

Tab. 1. The number of true edges estimated by two methods with different density levels.

Density	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
PLNet	8	16	23	35	41	44	62	73	81	92
VPLN	2	5	7	12	20	27	36	48	62	62

Thanks for watching!