

AD-DROP: Attribution-Driven Dropout for Robust Language Model Fine-Tuning

Tao Yang¹, Jinghao Deng¹, Xiaojun Quan¹, Qifan Wang², Shaoliang Nie²

¹ School of Computer Science and Engineering, Sun Yat-sen University ² Meta AI

NeurIPS 2022

Outlines

1/ Introduction

2 / Methodology

3/ Experiment

4 Analysis

Outlines

•7

1/ Introduction

2 / Methodology

3/ Experiment

4 Analysis

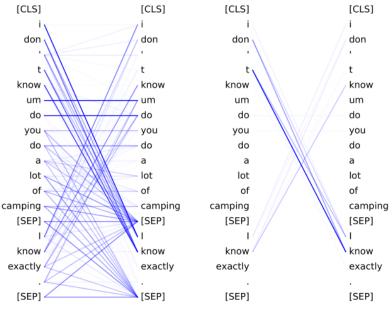
- Dropout
- □ Fine-tuning PrLMs is apt to suffer from overfitting. (Large model v.s. Small data)
- Dropout that randomly dropping a proportion of units is a widely used regularizer to mitigate overfitting.
- □ While existing research has rarely examined its effect on the self-attention mechanism.

Attribution

■ Attribution is an interpretability method that attributes predictions to the input features. [CLS] [CLS] [CLS] [CLS]

Self-attention Attribution

- □ Integrated Gradient
- Provide a more accurate saliency measure than attention score.



(a) Attention Score

(b) Attribution Score

Yaru Hao, et. al. Self-attention attribution: Interpreting information interactions inside transformer. AAAI, volume 35, pages 12963–12971, 2021.

• Prior Attribution Experiments

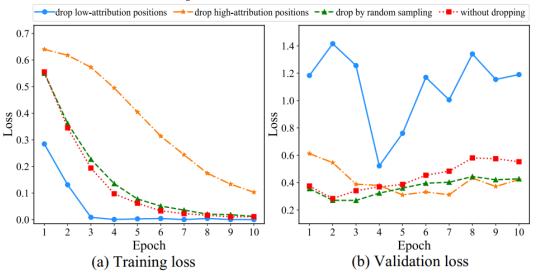


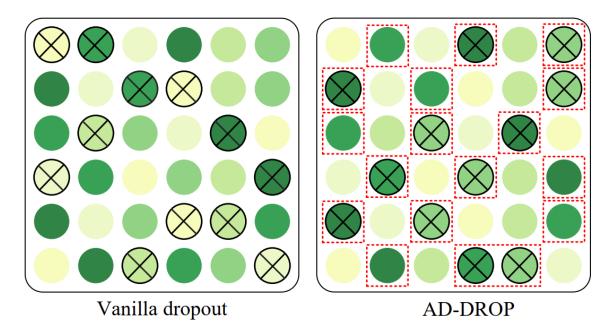
Figure 2: Results of training and validation losses when finetuning RoBERTa with different dropping strategies on MRPC. The dropping rate is set to 0.3 if it applies.

□ Dropping low attribution positions makes the model fit the training data rapidly, whereas it performs poorly on the development set. (Accelerate Overfitting)

□ Dropping high attribution positions reduces the fitting speed significantly.

AD-DROP

□ Attention positions are not equally important in preventing overfitting.



- > Darker attention positions indicate higher attribution scores.
- Red-dotted boxes refer to candidate discard regions with high attribution scores.
- > AD-DROP focuses on dropping positions in candidate discard regions.

1/ Introduction

Outlines

- 2/ Methodology
- 3/ Experiment
- 4 **Results**

Methodology

• AD-DROP

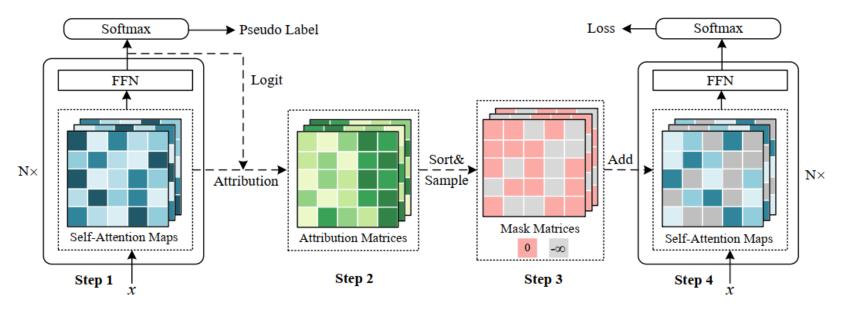


Figure 3: Illustration of AD-DROP in four steps. (1) Conduct the first forward computation to obtain pseudo label \tilde{c} . (2) Generate attribution matrices **B** via computing the gradient of logit output $F_{\tilde{c}}$ (**A**) with respect to each attention head. (3) Sort **B** and strategically drop some positions to produce mask matrices **M**. (4) Feed **M** into the next forward computation to compute the final loss.

original fine-tuning

AD-DROP

Methodology

• Cross-tuning

Algorithm 1 Cross-tuning

Input: shuffled training samples $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, PrLM F with parameters W

Output: updated parameters W

- 1: Initialize F with \mathbf{W} , epoch = 1
- 2: while not converged do
- 3: Calculate the prediction $P_F(y_i|x_i)$ and loss via forward computation.
- 4: **if** epoch%2 == 1 **then**
- 5: Backpropagate the loss to update model parameters **W**.
- 6: **else**
- 7: Perform AD-DROP by Eq. (4)-(7) to obtain mask matrices $\mathbf{M} = [\mathbf{M}_1, \mathbf{M}_2, \cdots, \mathbf{M}_H].$
- 8: Calculate the new prediction $P_F(y_i|x_i)$ and new loss by feeding M into Eq. (1).
- 9: Backpropagate the new loss to update model parameters **W**.

10: epoch = epoch + 1

11: return $\mathbf{W} = \mathbf{W}$

Outlines

1/ Introduction

2/ Methodology

3/ Experiment

4 Analysis

Experiment

Overall results

Table 1: Overall results of fine-tuned models on the GLUE benchmark. The symbol † denotes results directly taken from the original papers. The best average results are shown in bold.

Methods	SST-2	MNLI	QNLI	QQP	CoLA	STS-B	MRPC	RTE	Average	-
Development								_		
BERT _{base}	92.3	84.6	91.5	91.3	60.3	89.9	85.1	70.8	83.23	
$+SCAL^{\dagger}$ [17]	92.8	84.1	90.9	91.4	61.7	-	-	69.7	-	
+Super T^{\dagger} [48]	93.4	84.5	91.3	91.3	58.8	89.8	87.5	72.5	83.64	
+R-Drop [†] [18]	93.0	85.5	92.0	91.4	62.6	89.6	87.3	71.1	84.06	
+AD-DROP	93.9	85.1	92.3	91.8	64.6	90.4	88.5	75.1	85.21	+1.98
RoBERTabase	95.3	87.6	92.9	91.9	64.8	90.9	90.7	79.4	86.69	-
+ <i>R</i> - <i>Drop</i> [18]	95.2	87.8	93.2	91.7	64.7	91.2	90.5	80.5	86.85	
+HiddenCut [†] [15]	95.8	88.2	93.7	92.0	66.2	91.3	92.0	83.4	87.83	
+AD-DROP	95.8	88.0	93.5	92.0	66.8	91.4	92.2	84.1	87.98	+1.29
				Test						=
BERT _{base}	93.6	84.7	90.4	89.3	52.8	85.6	81.4	68.4	80.78	
+AD-DROP	94.3	85.2	91.6	89.4	53.3	86.6	84.1	68.7	81.65	+0.87
RoBERTa _{base}	94.8	87.5	92.8	89.6	58.3	88.7	86.3	75.1	84.14	-
+AD-DROP	95.9	87.6	93.4	89.5	58.5	89.3	87.9	76.0	84.76	+0.62

Analysis

Ablation study

Table 2: Results of ablation studies, where *r/w* means "replace with" and *w/o* means "without".

Methods	CoLA	STS-B	MRPC	RTE
BERT _{base}	60.3	89.9	85.1	70.8
+AD-DROP (GA)	64.6	90.4	88.5	75.1
r/w IGA	63.8	90.7	88.5	74.4
r/w AA	63.6	90.0	88.0	74.7
r/w RD	62.1	90.2	87.8	74.7
r/w gold labels	63.2	-	88.0	74.4
w/o cross-tuning	62.1	90.4	87.3	71.5
RoBERTa _{base}	64.8	90.9	90.7	79.4
+AD-DROP (GA)	66.8	91.4	92.2	84.1
r/w IGA	68.1	91.6	91.4	82.7
r/w AA	66.3	91.5	91.2	82.3
r/w RD	66.5	91.5	92.2	82.0
r/w gold labels	66.4	-	91.2	82.0
w/o cross-tuning	67.3	91.3	90.4	80.5

- □ Gradient-based attribution methods are better than others.
- □ IGA outperforms GA in some cases.
- AD-DROP improves the original models with any of the masking strategies.
- □ AD-DROP with pseudo labels for attribution is preferable.
- Removing cross-tuning causes noticeable performance degradation.

Outlines

1/ Introduction

2 / Methodology

3/ Experiment

4 Analysis

Analysis

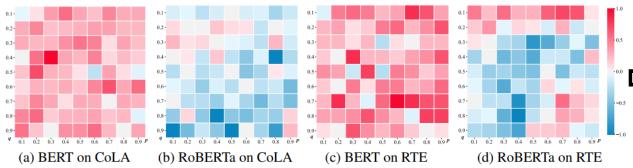
Repeated Experiments

Table 3: Results of repeated experiments. Each score is the average of five runs with a standard deviation.

Methods	CoLA	STS-B	MRPC	RTE
BERT _{base} +AD-DROP	$\begin{array}{c} 61.8_{\pm 1.9} \\ \textbf{63.4}_{\pm \textbf{0.4}} \end{array}$	$\begin{array}{c} 89.4_{\pm 0.5} \\ \textbf{90.1}_{\pm 0.5} \end{array}$	$85.2_{\pm 1.3}$ 87.4 $_{\pm 0.9}$	$71.2_{\pm 1.2} \\ \textbf{73.9}_{\pm 1.1}$
RoBERTa _{base} +AD-DROP	$\begin{array}{c} 64.3_{\pm 0.9} \\ \textbf{66.4}_{\pm 0.9} \end{array}$	$91.0_{\pm 0.2} \\ 91.2_{\pm 0.1}$	$\begin{array}{c} 89.8_{\pm 0.8} \\ \textbf{91.3}_{\pm 0.7} \end{array}$	$\begin{array}{c} 79.1_{\pm 1.7} \\ \textbf{82.5}_{\pm 0.9} \end{array}$

AD-DROP achieves better performance with lower deviations.

Hyperparameter Sensitivity



RoBERTa with AD-DROP is more sensitive than BERT.

Figure 6: Results of sensitivity study on CoLA and RTE. Rows correspond to p and columns refer to q. Blue blocks indicate the results of AD-DROP below the baseline (FT), and red blocks mean the results of AD-DROP above the baseline. Darker colors mean greater gaps with the baseline.

Analysis

Few-shot Scenario

Table 5: Testing AD-DROP in few-shot settings. RoBERTa with AD-DROP achieves higher performance and lower deviations than that with the original fine-tuning approach.

Methods	SST-2 16-shot 64-shot 256-shot			CoLA 16-shot 64-shot 256-shot			
RoBERTa _{base} +AD-DROP		$\begin{array}{c} 89.06_{\pm 0.83} \\ \textbf{91.61}_{\pm 0.52} \end{array}$			$\begin{array}{c} 39.70_{\pm 4.68} \\ \textbf{46.41}_{\pm 1.98} \end{array}$		

Computational Efficiency

Table 7: Results of performance and computational cost of AD-DROP with different masking strategies (GA, IGA, AA, and RD) relative to the original fine-tuning. The symbol ‡ means AD-DROP is only applied in the first layer. BERT is chosen as the base model.

Mathada	CoLA		STS-B [‡]		MRPC Acc Time		RTE	
Methods	Mcc	Time	Pcc	Time	Acc	Time	Acc	Time
RD	+1.8	×1.42	+0.3	×1.38	+2.7	×1.31 ×1.94	+3.9	×1.42
AA	+3.3	×1.42	+0.1	$\times 1.48$	+2.9	×1.94	+3.9	$\times 1.58$
GA	+4.3	$\times 3.58$	+0.5	$\times 1.95$	+3.4	×4.13	+4.3	$\times 4.50$
IGA	+3.5	×99.61	+0.8	×15.00	+3.4	×110.12	+3.6	×125.67

□ AD-DROP with GA is more competitive than others.

Outlines

1/ Introduction

2 / Methodology

3/ Experiment

4 / Results

- We proposed AD-DROP to mitigate overfitting when finetuning PrLMs on downstream tasks. AD-DROP focuses on discarding high attribution attention positions to prevent the model from relying heavily on these positions to make predictions.
- □ We proposed a cross-tuning strategy that performs the original finetuning and our AD-DROP alternately to stabilize the finetuning process.
- Extensive experiments and analysis demonstrate the effectiveness of AD-DROP.

Thanks !