ComGAN: Unsupervised Disentanglement and Segmentation via Image Composition Rui Ding, Kehua Guo, Xiangyuan Zhu, Zheng Wu, and Liwei Wang Central South University # Background - ◆ Image composition can be regarded as combining multiple visual areas to construct a realistic image. - This kind of work commonly requires the following assumption: **Assumption 1** An image x taken from the world is typically composed of foreground x_f and background x_h , which can be decomposed by the following equation: $$x = x_f \odot x_m + x_f \odot (1 - x_m),$$ where x_m is the mask, and the \odot denotes element-wise multiplication operator. #### ◆ Application: Image Disentanglement Images credit: FineGAN^[1] **Object Segmentation** Images credit: Labels4Free^[2] Clustering Images credit: C3-GAN^[3] # Background ## Assumption 1 works so well. Does it have a negative effect? - ◆ The compositional generation process is often accompanied by trivial solutions. - > Trivial solutions can be considered meaningless masks generated by models. ## **Motivation** #### ◆ Previous methods: - Add supervised information to the model. - Design clever regularization and fine-tune the parameters. ## **※** Our goal is: - finding the source of trivial solutions, and - designing a model that can - Solve this issue from other perspectives, and - Effective extension to relevant applications. ## Method ◆ The source of trivial solutions: **Lemma 1** Let L_{all} be the overall loss and x_m be the synthesized mask. Consider a model that composes images utilizing Assumption 1. There exist vanishing gradients on the mask if and only if the model converges to two kinds of trivial solutions. Key idea: Keep the gradients positive from the perspective of architecture. ◆ Framework of ComGAN: The learning objective is as follows: $$L_{all} = \min_{\Phi, \mathcal{F}, \mathcal{B}, \mathcal{M}} \max_{D} \mathcal{L}_{D}^{adv} + \min_{\Phi, \mathcal{M}} \beta \mathcal{L}_{binary}$$ ## Method Synthesize images and high semantic masks in an unsupervised manner. ➤ The composited image can be written as: $$\bar{x} = \mathcal{F}(\phi(z)) \odot \mathcal{M}(\phi(z)) + \mathcal{B}(\phi(z)) \odot (1 - \mathcal{M}(\phi(z)))$$ ### ◆ Advantages of ComGAN: ➤ This form generalizes two typical image compositional generation methods: Model Π_1 $\mathcal{B}(\phi(z)) = \mathcal{B}(z)$: FineGAN [1], Labels4Free [2], etc. can be formulated as this form; Model Π_2 $\phi(z) = z$: PerturbGAN [4], CGN [5], etc. can be formulated as this form. ➤ In this paper, Theorem 1 shows that there exists a lower bound on the gradient norms of the mask generator in ComGAN. ## Method ### Can the advantages of ComGAN be reflected in relevant applications? ◆ DS-ComGAN, the ComGAN-based variant, achieves image disentanglement and object segmentation in a fully unsupervised manner. ➤ The learning objective is as follows: objective for image disentanglement task $L_{all} = \underbrace{\max_{D_f, D_b} L_{info} + \min_{G, \mathcal{F}, \mathcal{B}, \mathcal{M}} \max_{D_z} \mathcal{L}_{D_z}^{adv} + \min_{\mathcal{S}} \max_{D_m} \mathcal{L}_{D_m}^{adv} + \min_{\mathcal{S}} \lambda \mathcal{L}_{cons}}_{objective for object segmentation task}$ ## **Experiments #1: Com-GAN** X To show that ComGAN solves trivial solutions, the comparison results on CUB for the synthesized mask and the gradient norms are presented. FineGAN as a typical network of model Π_1 . PerturbGAN (Replace StyleGAN with simpleGAN) as a typical network of model \prod_2 . | | | CUB | | FS-100 | | Stanf | ford-Cars | |-----------------------------|--------|--------|-----------------|--------|-----------------|--------|-----------------| | Methods | Sup. | FID ↓ | IS↑ | FID↓ | IS↑ | FID ↓ | IS↑ | | Triple-GAN [49] | Semi. | 140.94 | 3.94 ± 0.06 | 91.05 | 1.45 ± 0.03 | 114.12 | 2.45 ± 0.06 | | EnhancedTGAN [40] | Semi. | 133.57 | 4.17 ± 0.06 | 57.58 | 1.57 ± 0.02 | 105.20 | 2.43 ± 0.05 | | Triangle-GAN [50] | Semi. | 96.42 | 4.36 ± 0.05 | 35.49 | 1.71 ± 0.04 | 61.44 | 2.77 ± 0.10 | | R ³ -CGAN [51] | Semi. | 88.62 | 4.43 ± 0.06 | 25.28 | 1.73 ± 0.02 | 44.57 | 3.05 ± 0.04 | | SSC-GAN [§] [27] | Semi. | 20.03 | 4.68 ± 0.04 | 20.65 | 1.82 ± 0.03 | 39.02 | 3.10±0.03 | | FineGAN§ [25] | Weak. | 46.68 | 4.62 ± 0.03 | 24.63 | 1.76 ± 0.02 | 45.72 | 2.85 ± 0.04 | | MixNMatch [§] [31] | Weak. | 45.59 | 4.78 ± 0.08 | 25.63 | 1.71 ± 0.05 | 45.94 | 2.60 ± 0.05 | | SN-GAN [52] | Unsup. | 160.09 | 4.21 ± 0.05 | 41.26 | 1.66 ± 0.05 | 53.20 | 2.80 ± 0.05 | | DS-ComGAN§ | Unsup. | 16.26 | 4.79 ± 0.47 | 20.15 | 1.83 ± 0.32 | 34.17 | $2.84{\pm}0.12$ | Table 1: Image synthesis results for each dataset measured in FID and IS. DS-ComGAN is compared with the state-of-the-art un(semi-)supervised GAN-based models. § indicates that the models have the ability to achieve image disentanglement. | | | Single | Multi-Object | | | | | |-----------------------------|--------------|-----------------|--------------|-------------------|--------|-------------------|--| | | Stanfor-Dogs | | F | lowers | CLEVR6 | | | | Methods | FID ↓ | IS↑ | FID ↓ | IS↑ | FID ↓ | IS↑ | | | SSC-GAN§ [27] | 64.26 | 8.97 ± 0.12 | 29.09 | 3.41 ± 0.03 | \ | \ | | | FineGAN§ [25] | 69.52 | 8.27 ± 0.17 | \ | \ | \ | \ | | | MixNMatch [§] [31] | 68.31 | 8.32 ± 0.06 | \ | \ | \ | \ | | | $DS\text{-}ComGAN^\S$ | 60.84 | $9.17{\pm}0.23$ | 27.19 | $3.42 {\pm} 0.04$ | 77.08 | $2.75 {\pm} 0.05$ | | Table 2: **Performance of DS-ComGAN on datasets with various attributes.** Noting that the Flowers dataset lacks bounding box annotation, FineGAN and MixNMatch both are unsuitable for this dataset (marked as \setminus). CLEVR6 lacks bounding box annotation and labels. Consequently, only our model is suitable for CLEVR6. #### ★ DS-ComGAN exhibits: - Unsupervised image disentanglement (Varying variables f, b & z); - Better image quality (FID↑) and diversity (IS \downarrow); - Robustness to diverse datasets. (a) CUB (b) Stanford-Dogs (c) Stanford-Cars (d) Flowers (e) CLEVR6 | | | Single Object | | | | | | | Multi-Object | | |------------------|------|---------------|---------------|-------|---------------|-------|---------|-------|--------------|-------| | | CUB | | Stanford-Dogs | | Stanford-Cars | | Flowers | | CLEVR6 | | | Methods | IoU↑ | Dice↑ | | W-Net [34] | 24.8 | 38.9 | 47.7 | 62.1 | 52.8 | 67.6 | _ | _ | _ | - | | GrabCut [53] | 30.2 | 42.7 | 58.3 | 70.9 | 61.3 | 73.1 | 69.2 | 79.1 | 19.0 | 30.5 | | ReDO†* [35] | 46.5 | 60.2 | 55.7 | 70.3 | 52.5 | 68.6 | 76.4 | - | 18.6 | 31.0 | | OneGAN◊* [21] | 55.5 | 69.2 | 71.0 | 81.7 | 71.2 | 82.6 | | - | - | - | | IODINE† [54] | 30.9 | 44.6 | 54.4 | 67.0 | 51.7 | 67.3 | - | - | 19.9 | 32.4 | | PerturbGAN [11] | 38.0 | - | _ | - | _ | - | - | - | - | - | | Slot-Attn.† [55] | 35.6 | 51.5 | 38.6 | 55.3 | 41.3 | 58.3 | - | - | 83.6 | 90.7 | | IEM+SegNet [36] | 55.1 | 68.7 | - | - | _ | - | 76.8 | 84.6 | - | - | | DRC [44] | 56.4 | 70.9 | 71.7 | 83.2 | 72.4 | 83.7 | - | - | 84.7 | 91.5 | | DS-ComGAN | 60.7 | 71.3 | 74.5 | 84.6 | 76.7 | 86.6 | 76.9 | 83.1 | 90.0 | 94.6 | Table 3: **Segmentation results on training data measured in IoU and Dice**. DS-ComGAN is compared with the state-of-the-art un(weakly-)supervised segmentation methods. Following the [44], † indicates unfair baseline results obtained using extra ground-truth information. * represents a GAN-based model. OneGAN is a weakly supervised baseline, which requires clean backgrounds as additional inputs. #### **X** DS-ComGAN exhibits: - Unsupervised object segmentation; - More precise segmentation(IoU↑ and Dice↑); - Robustness to diverse datasets. # Thank you!