
Global Convergence
and Stability of SGD

Vivak Patel, Shushu Zhang, and Bowen Tian

NeurIPS 2022



What is SGD?Why do we care?

Stochastic Gradient Descent (SGD) is a foundational
algorithm used to train machine learning models that has
shown incredible generalization ability over most of its
competitors.

Thus, understandingwhen SGD succeeds or fails at training
is essential to robust and reliable learning.

In particular, understanding SGD'sglobal convergence
behavior is the starting point for any further analysis of SGD.
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PROBLEM
Unfortunately, existing global convergence analyses
of SGD do not apply to realistic machine learning

models.



Failure on Archetype Examples

In our work, we show that existing theory fails for:

→ A simple feed forward network for binary classification
with three layers trained with a standard approach.

→ A simple recurrent neural network for binary
classification with a temporal length of four trained with a
standard approach.

→ A trivial Poisson regression problem for modeling
count data given some feature information.
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How dowe fail?

How exactly does the theory fail on these examples?

Assume the gradient of the objective (e.g., empirical risk
minimization problem) is globally Lipschitz continuous or
(L0, L1)-smooth.

Assume the variance of the stochastic gradients is
globally bounded, satisfies expected smoothness, or even exists.
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What are better assumptions?

Assume the gradient is locally Hölder continuous for some
power α ∈ (0, 1].

Assume the α + 1-moment of the stochastic gradients is
upper bounded by an arbitrary upper semi-continuous
function.

Our aforementioned examples satisfy these assumptions.

6



What are better assumptions?

Assume the gradient is locally Hölder continuous for some
power α ∈ (0, 1].

Assume the α + 1-moment of the stochastic gradients is
upper bounded by an arbitrary upper semi-continuous
function.

Our aforementioned examples satisfy these assumptions.

6



What are better assumptions?

Assume the gradient is locally Hölder continuous for some
power α ∈ (0, 1].

Assume the α + 1-moment of the stochastic gradients is
upper bounded by an arbitrary upper semi-continuous
function.

Our aforementioned examples satisfy these assumptions.

6



What are better assumptions?

Assume the gradient is locally Hölder continuous for some
power α ∈ (0, 1].

Assume the α + 1-moment of the stochastic gradients is
upper bounded by an arbitrary upper semi-continuous
function.

Our aforementioned examples satisfy these assumptions.

6



Why is this setting so complicated?

A priori, SGD's iterates can behave arbitrarily: converge to a
stationary point, converge to a non-stationary point, enter a
cycle, have a limit cycle, distinct limit supremum and infimum,
vary i.o. between infinity and a finite point, and they can diverge.

Current analysis techniques do not generalize trivially or
readily to this setting!
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What do we do?

For SGDwith diminishing, matrix-valued step sizes:

We develop two novel analysis techniques that generalize
to this more realistic and complicated setting.

Under this setting, we show that SGD's iterates either
converge to a stationary point or diverge with probability one.
See Theorem 2.

Under an additional, interesting assumption, we show that the
objective function cannot diverge even if the iterates diverge.
See Theorem 3.
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SUMMARY
Weprovide the first global convergence analysis of

SGD under realistic assumptions for
differentiable machine learning problems.


